13. $8^{x-3}=6^{x+2}$

$$
\begin{aligned}
& \log 8^{x-3}=\log 6^{x+2} \\
&(x-3) \log 8=\underline{(x+2) \log b} \\
& x \log 8-3 \log 8=x \log 6+2 \log 6 \\
&-x \log 6+3 \log 8-x \log 6 \\
& x \log 8-x \log 6=2 \log 6+3 \log 8 \\
& \frac{x(\log 8-\log 6)}{\log 8-\log 6}= \frac{(2 \log 6+3 \log 8)}{(\log 8-\log 6)}=\frac{\left(\log 6^{2}+\log 8^{3}\right)}{\log \frac{8}{6}}=\frac{(\log 36+\log 512)}{\log \frac{4}{3}}=\frac{\log 18,432}{\log \frac{4}{3}} \\
& x \approx 34.1413
\end{aligned}
$$

$$
\begin{aligned}
& \log _{2} 32=5 \quad \log _{2} 31 \\
& 2^{n}=32
\end{aligned}
$$

Change of tasse formulas: $\log _{a} n=\frac{\log _{b} n}{\log _{b} a}$
\rightarrow Express each logarithm in terms of common logarithms.

$$
\frac{\frac{14 . \log _{2} 25}{\log 25}}{\frac{109}{\log 4} \frac{\log _{3} 56}{\log 56}} \frac{\log _{3}}{\frac{\log 1987}{\log 13}}
$$

