(4)

$$
\begin{aligned}
& \text { 4) } \begin{array}{l}
\frac{4 x^{2}+4 y^{2}+16 x-8 y-5=0}{4} \\
x^{2}+4 x+4+y^{2}-2 y+1=\frac{5}{4}+4 \\
(x+2)^{2}+(y-1)^{2}=\frac{25}{4}
\end{array}
\end{aligned}
$$

center $(-2,1)$
radius $\frac{5}{2}$

$$
\begin{aligned}
& \frac{4 x^{2}}{}+\underline{9 y^{2}}-8 x+36 y+4=0 \\
& 4\left(x^{2}-2 x+1\right)+9\left(y^{2}+4 y+\right. \\
& \frac{4(x-1)^{2}}{369}+\frac{4(y+2)^{2}}{364} \\
& \frac{(x-1)^{2}}{9}+\frac{(y+2)^{2}}{4}=1 \\
& \frac{\text { center }(1,-2)}{\text { vertices }(4,-2)(-2,-2)} \\
& \text { farci }(1 \pm \sqrt{5},-2)
\end{aligned}
$$

$$
4\left(x^{2}-2 x+1\right)+9\left(y^{2}+4 y+4\right)=-4+4(1)+9(4)
$$

foci at $(4,3)$ and $(4,-7)$ and the length of the major axis is 14 .
7. Write the equation of the ellipse that has center $(1,3)$, the major axis is parallel to the y-axis, one vertex is $(1,8)$, and $b=3$. Then list the coordinates of the other vertices and the foci.

$$
\begin{aligned}
& \frac{\frac{(x-1)^{2}}{9}+\frac{(y-3)^{2}}{25}}{}=1 \\
& \text { vertices }(1,8)(1,-2) \\
& (4,3)(-2,3) \\
& \text { for }(1,7)(1,-1)
\end{aligned}
$$

$$
\begin{aligned}
& h=1 \\
& \begin{array}{ll}
h \\
k & =3
\end{array} \\
& a=5 \\
& b=3 \\
& c=4
\end{aligned}
$$

$$
\begin{aligned}
& c^{2}=16 \\
& c=4
\end{aligned}
$$

