$$
\left\{\begin{array}{l}
\ln e^{5}=5 \\
\ln e^{12}=12 \\
\ln e^{-3}=-3 \\
\ln ^{\ln (2)}=2 \\
e^{\ln (7)}=\log _{e} e^{5} \\
e^{n}-5
\end{array}\right.
$$

Since the natural base function and the natural logarithmic function are inverses, these two functions can be used to "undo" each other
$e^{\ln x}=x$
$\ln e^{x}=x$

For example $e^{\ln 7}=7$ and $\ln e^{4 x+3}=4 x+3$.

When interest is compounded continuously, the amount A in an account after t years is found using the formula $A=P e^{r t}$, where P is the amount of principal and r is the annual interest rate (as a decimal).
$r=.025$
Suppose you deposit \$1000 in an account paying 2.5\% annual interest, compounded continuously, what is the balance after 10 years. 15 years?

$$
\begin{array}{ll}
A=\rho e^{r t} & \\
A=1000 e^{.025(10)} & A=1000 e^{(125(15)} \\
A=\$ 1284.03 & A=\$ 1454.99
\end{array}
$$

9.5 wast \rightarrow due tomorrow

$$
\text { midterm } \rightarrow \text { due Thursday }(5 p+s)
$$

