

Since the natural base function and the natural logarithmic function are inverses, these two functions can be used to "undo" each other.

$$
e^{\ln x}=\sqrt{x} \quad \ln e^{x}=x
$$

For example $e^{\ln \gamma}=7$ and $\ln e^{4 x+3}=4 x+3$.
(1) $5 e^{-x}-7=2$


$$
5 e^{-x}=9
$$

$$
e^{-x}=\frac{9}{5}
$$


$\operatorname{exact}^{t} x=-\ln \frac{9}{5}$

(2) $3 e^{x}+2=4$

$$
\begin{gathered}
3 e^{x}=2 \\
e^{x}=\frac{2}{3} \quad \log \text { form } \\
\ln e^{x}=\ln \frac{2}{3} \quad \ln \frac{2}{3}=x \\
x=\ln \frac{2}{3} \quad \text { exact } \\
x \approx-.4055
\end{gathered}
$$

(3) $\ln 5 x=4$

(4) $\ln (x-1)=-2$ exact $\begin{aligned} x & =\frac{e^{4}}{5} \\ x & \approx 10.9196\end{aligned}$

$$
\begin{aligned}
& e^{\ln (x-1)}=e^{-2} \quad e^{-2}=x-1 \\
& x-1=e^{-2} \\
& x=e^{-2}+1 \quad \text { exp. form } \\
& x \approx 1.1353
\end{aligned}
$$

When interest is compounded continuously the amount $A$ in an account after $t$ years is found using the formula $A=\widetilde{P e^{r t}}$, where $P$ is the amount of principal and $r$ is the annual interest rate (as a decimal). initial a mount
Suppose you deposit $\$ 1000$ in an account paying $2.5 \%$ annual interest, compounded continuously, what is the balance after 10 years 15 years?

$$
\begin{gathered}
A=P e^{r t} \\
A=1000 e^{.025(10)} \\
A=1000 e^{.025(15)} \quad A=1000 e^{\wedge}(.025 \times 10) . \\
=\$ 1454.99 \quad A=\$ 1284.03
\end{gathered}
$$

9.5 wkst-due tomorrow
midterm - due Thursclay ( 5pts)

