23. Suppose you deposit $\$ 1000$ in an account paying 2% annual interest, compounded continuously, how many years would It take for your account to be worth $\$ 2000$?

$$
\begin{aligned}
& A=P e^{r t} \\
& \frac{2000}{1000}=\frac{1000 e^{.02 t}}{1000} \\
& 2=e^{.02 t} \\
& \ln \alpha=\ln e^{.02 t} \rightarrow .02 t \ln e \\
& \frac{\ln \alpha}{.02}=\frac{.02 t}{.02} \\
& 34.657 \\
& 34,6-6 \boxed{3} t
\end{aligned}
$$

21. Suppose you deposit $\$ 500$ in an account paying 1.5% annual interest, compounded continuously, what is the balance after 5 years?

$$
\text { 16. } \begin{aligned}
&-2 e^{3 x}+12=-48 \\
&-2 e^{3 x}=-60 \\
& e^{3 x}=30 \\
& \ln e^{3 x}=\ln 30 \\
& 3 x=\ln 30 \\
& x=\frac{\ln 30}{3} \\
& \ln (30) / 3 \cdot 1.1337 \\
& \text { 19. } \ln (7 x-4)=-0.3 \\
& e^{-.3}=7 x-4 \\
& e^{-.3+4}=7 x \\
& \frac{\left(e^{-3}+4\right)}{7}=x \\
& x^{\pi} .6773
\end{aligned}
$$

Exponential Growth:

$$
y=a(1+r)^{t}
$$

$$
y=a(b)^{x} \quad b>1
$$

Exponential Decay:
$y=a(1-r)^{t}$
$y=a(b)^{x} \quad 0<b<1$
Where y is the amount of a quantity that exists/remains after t time periods given an initial amount a and r is the percent of increase/decrease expressed as a decimal.

1. A cup of coffee contains 130 . milligrams of caffeine. If caffeine is eliminated from the body at a rate of 11% per hour, how long

$$
y=a(1-r)^{t}
$$ will it take for half of this caffeine

$$
\frac{65}{130}=\frac{130(1-.11)^{t}}{130}
$$ to be eliminated?

$$
.5=.89^{t}
$$

$$
\begin{aligned}
& \ln .5=\ln .89^{t} \quad \log .5=\log .89^{t} \\
& \frac{\ln .5}{\ln .89}=\frac{t \ln .89}{\ln .89} \quad \frac{\log .5}{\log .89}=\frac{t \log .89}{\log .89} \\
& t \approx 5.948 \mathrm{hrs} \\
& 5.95 \\
& 5.9 \\
& 6
\end{aligned}
$$

