13.
$$3e^{-2x} - 5 = 4$$

$$3e^{-2x} = 9$$

$$e^{-2x} = 3$$

$$\ln(3)/2$$

$$\ln e^{-2x} = \ln 3$$

$$-2x = \ln 3$$

$$x = \ln 3$$

$$x = \ln 3$$

$$x = \ln 3$$

$$x = -3$$

$$x = \ln 3$$

$$\ln(3x+4) = -7$$

$$e^{(3x+4)} = e^{-7}$$

$$3x + 4 = e^{-7}$$

$$3x = e^{-7} - 4$$

$$x = (e^{-7} - 4)$$

$$x = (-7 - 4)$$

$$x = (-7 - 4)$$

23. Suppose you deposit \$1000 in an account paying 2% annual interest, compounded continuously, how many years would it take for your account to be worth \$2000?

$$A = Pe^{-\Phi}$$
 $2000 = 1000e^{.02t}$
 $t = 34.6574 \text{ yrs}$
 $2 = e^{.02t}$
 34.7
 35
 $ln = ln e^{.02t}$
 $ln = .02t$
 $ln = .02t$
 $ln = .02t$
 $ln = .02t$

Section 9.6 - Exponential Growth and Decay

Exponential Growth: $y = a(1+r)^{+}$ $y=a(b)^{\times}$ b>1Exponential Decay: $y = a(1-r)^{+}$ $y=a(b)^{\times}$ 0 < b < 1

Where ${\mathcal Y}$ is the amount of a quantity that exists/remains after t time periods given an initial amount \mathcal{C} and \mathcal{V} is the percent of increase/decrease expressed as a decimal.

2. In 1910, the population of a city was 120,000. Since then, the population has increased by 1.5% per year. If the population continues to grow at this rate, what will the population be in

2010?

The population be in

$$y = a (1 + r)^{t}$$
 $y = 120,000(1 + .015)^{100}$
 $y = 120,000(1.015)^{100}$
 $y = 531,845$

People

A cup of coffee contains 130
milligrams of caffeine. If caffeine
is eliminated from the body at a
rate of 11% per hour, how long
will it take for half of this caffeine

to be eliminated?
$$y = a(1-r)^{t}$$
 $|og_{b}m^{p} = p|og_{b}n^{r}$

$$\frac{65}{130} = 130(1-.11)^{t}$$

$$log.5 = log.89t$$
 $log.5 = tlog.89$
 $log.87$
 $log.87$
 $log.87$
 $log.87$
 $log.89$
 $log.89$
 $log.89$
 $log.89$