$$
\begin{aligned}
& \text { 13. } 3 e^{-2 x}-5=4 \\
& 3 e^{-2 x}=9 \\
& \begin{aligned}
3 e^{-2 x} & =9 \\
e^{-2 x} & =3
\end{aligned} \quad \ln (3) /-2 \\
& \begin{aligned}
-2 x \ln e \quad \begin{aligned}
e^{-2 x} & =\ln 3 \\
-2 x & =\ln 3
\end{aligned} \\
-2 x
\end{aligned} \\
& \begin{aligned}
-2 x & =\ln 3 \\
x & =\ln 3
\end{aligned} \\
& \begin{array}{c}
x=-\ln 3 \\
x \approx-.5493
\end{array} \\
& \text { 18. } \ln (3 x+4)=-7 \\
& e^{h(3 x+4)}=e^{-7} \\
& \begin{aligned}
3 x+4 & =e^{-7} \\
3 x & =e^{-7}-4
\end{aligned} \quad\left(e^{-}(-7)-4\right) / 3 \\
& x=\frac{\left(e^{-7}-4\right)}{3} \text {. } \\
& x \approx-1.3330
\end{aligned}
$$

23. Suppose you deposit $\$ 1000$ in an account paying 2% annual interest, compounded continuously, how many wo rs would it take for your account to be worth $\$ 2000$?

$$
\begin{array}{rlrl}
A & =P e^{R t} & \\
2000 & =1000 e^{.02 t} & t=34.6574 y r s \\
2 & =e^{.02 t} & 34.7 \\
\ln 2 & =\ln e^{.02 t} & 35 \\
\ln \alpha & =.02 t & \\
\frac{\ln 2}{.02} & =t &
\end{array}
$$

Section 9.6 - Exponential Growth and Decay
Exponential Growth:

$$
y=a(1+r)^{t}
$$

$$
\begin{aligned}
& y=a(b)^{x} \quad b>1 \\
& y=a(b)^{x} \quad(0<b<1
\end{aligned}
$$

Exponential Decay:

$$
y=a(1-r)^{t}
$$

Where \mathcal{y} is the amount of a quantity that exists/remains after t time periods given an initial amount a and r is the percent of increase/decrease expressed as a decimal.
2. In 1910, the population of a city was 120,000 . Since then, the population has increased by 1.5% per year. If the population continues to grow at this rate, what will the population be in 2010?

$$
\begin{aligned}
& y=a(1+r)^{t} \\
& y=120,000(1+.015)^{100} \\
& y=120,000(1.015)^{100} \\
& y=531,845 \quad \text { people }
\end{aligned}
$$

1. A cup of coffee contains 130 milligrams of caffeine. If caffeine is eliminated from the body at a rate of 11% per hour, how long will it take for half of this caffeine to be eliminated? $\quad y=a(1-r)^{t}$

$$
\begin{aligned}
& \log _{b} m^{p}=\rho \log _{b} m \frac{65}{130}=\frac{130(1-.11)^{t}}{130}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\log .5}{\log .89}=\frac{t \log .89}{\log .89} \quad \frac{\ln .5}{\ln .89}=\frac{t \ln .89}{\ln .89} \\
& t \simeq 5.948 \mathrm{hrs} \\
& \begin{array}{l}
5.95 \\
5.9
\end{array} \\
& 6
\end{aligned}
$$

