April 242013 7th.gwb - 1/2 - Wed Apr 242013 13:58:59

Find the equation of the hyperbola with foci at $(7,1)$ and $(-3,1)$ whose transverse axis is 8 nits long.

$$
\begin{aligned}
& \begin{array}{c|c}
F_{1} & \\
(-3,1) & (2,1) \\
\left(\frac{F_{2}}{2}\right. & (2,1) \\
\left(\frac{3+7}{2}\right. & \left., \frac{1+1}{2}\right)
\end{array}
\end{aligned}
$$

$$
\begin{array}{cc}
{\left[\frac{(x-2)^{2}}{16}\right.} & \frac{(y-1)^{2}}{9}=1 \\
h=2 & 2 a=8 \\
k=1 & a=4 \\
a=4 & b^{2}=c^{2}-a^{2} \\
b= & b^{2}=25-16 \\
c=5 & b^{2}=9
\end{array}
$$

 the asymptotes of the graph of $\frac{(y+4)^{2}}{36=a^{2}}-\frac{(x-2)^{2}}{25=b^{2}}=1$. Then graph the equation.

$$
\begin{aligned}
& h=2 \\
& k=-4
\end{aligned}
$$

$$
a=6
$$

$$
b=5
$$

$c=\sqrt{61}$

$$
\begin{gathered}
b^{2}=c^{2}+a^{2} \\
b^{2}+a^{2}=c^{2} \\
25+36=c^{2} \\
61=c^{2}
\end{gathered}
$$

$$
\text { center }(2,-4)
$$

Vertices $(2,2)(2,-10)$

$$
\text { foci }(2,-4 \pm \sqrt{61})
$$

asymptotes $y+4= \pm \frac{6}{5}(x-2)$

