3. A store is offering a clearance sale on a certain type of digital camera The original price for the camera was $\$ 198$. The price decreases 10% each week until all of the cameras are sold. How many weeks will it take for the price of the cameras to drop below half of the original price?

$$
\begin{aligned}
& y=a(1-r) t \\
& \frac{99}{198}=\frac{198(1-.1)^{t}}{198} \\
& \log .5^{t}=\log .9 t \quad \ln .5=\ln .9^{t} \\
& \frac{\log .5}{\log .9}=\frac{t \log _{.9} 9}{\log .9} \quad \frac{\ln .5}{\ln .9}=\frac{t \ln .9}{\ln .9} \\
& t=6.58 \text { weeks } 7 \text { weeks }
\end{aligned}
$$

4. Home values in Millersport increase about 4\% per year. Mr. Thomas purchased his home eight years ago for $\$ 122,000$. What is the value of his home now?

$$
\begin{gathered}
y=a(1+r)^{t} \\
y=122,000(1+.04)^{8} \\
y=\$ 166,965.42
\end{gathered}
$$

Another model for exponential decay is $y=a e$, where k is a constant.
This is the model preferred by scientists. Use this model to solve problems involving radioactive decay. Radioactive decay is the decrease in the intensity of a radioactive material over time, such as carbon dating methods.

The half-life of a radioactive substance is the time it takes for half of the atoms of the substance to disintegrate. All life on Earth contains Carbon-14, which decays continuously at a fixed rate. The half-life of Carbon-14 is 5760 years. The value of k for Carbon-14 is ≈ 0.00012
5. A specimen that originally

$$
y=a e^{-k t}
$$ contained 275 milligrams of Carbon-14 is found after 12,560 years. How much Carbon-14 is remaining?

6. A specimen that originally contained 150 milligrams of

$$
\frac{130}{150}=\frac{150 e^{-.000}}{150}
$$

Carbon-14 now contains 130

$$
\frac{130}{150}=e^{-.00012 t}
$$

milligrams. How old is the fossil?

7. In 2005, China's population was 1.31 billion people. It's growth can be modeled by the equation $y=1.31 e^{0.0038 t}$. How long will it be before China's population reaches 2 billion people?

$$
\begin{gathered}
\frac{\alpha}{1.31}=\frac{1.31 e^{.0038 t}}{1.31} \\
\ln \frac{2}{1.31}=\ln e^{.0038 t} \\
\ln \frac{2}{1.31}=\frac{.0038 t}{.0038} \\
t \approx 111.35 \mathrm{yrs} \\
112 \mathrm{yrs}
\end{gathered}
$$

A GPS system was purchased for $\$ 12,500$. After 5 years, the GPS is now worth $\$ 8600$. To the nearest tenth, what was the rate of depreciation?

$$
\begin{aligned}
y & =a(1-r)^{t} \\
\frac{8600}{12,500} & =\frac{12500(1-r)^{5}}{12,500} \\
\sqrt[5]{.688} & \sqrt[5]{(1-r)^{5}} \\
\sqrt[5]{.688} & =1-r \\
\sqrt[5]{.688}-1 & =-r \\
-\sqrt[5]{.688}+1 & =r \\
.0721 & \approx r
\end{aligned}
$$

