12. An anthropologist studying the bones of a
prehistoric person knows that there were
originally 172 milligrams of Carbon-14 in the tibia.
How old is the bone if there are 13 milligrams of
Carbon-14 remaining?

$$
y=a e^{-k t}
$$

$$
13=172 e^{-.00012 t}
$$

$$
\ln \frac{13}{172}=\ln e^{-, 00012 t}
$$

$$
\frac{\ln \left(\frac{13}{172}\right)}{-.00012}=\frac{-.00012 t}{-.00012}
$$

$$
y s=t
$$

15. The element plutonium-239 is highly radioactive.

Nuclear reactors can produce and also use this
element. If the half-life 8 f plutonium- 239 (24,360
years, what is the value of k for this element?

16. A certain medication is eliminated from the bloodstream at a steady rate. It decays according to the equation $y=a e^{-0.25 t}$, where t is in hours. After 5 hours, a patient still has $22 \mathrm{cc}^{\prime}$ s of the medication still in their bloodstream. How much of the medication was originally administered?

7. A home was purchase in 2003 for $\$ 152,000$. In 2012, the home was worth $\$ 175,000$. To the nearest tenth of a percent, what was the rate of inflation per year?

$$
\begin{aligned}
y & =a(1+r)^{t} \\
\frac{175,0 d d}{152,090} & =\frac{152,000(1+r}{152,000} \\
\sqrt[9]{\frac{175}{152}} & =\sqrt[9]{(1+r)^{9}} \\
\sqrt[9]{\frac{175}{152}} & =1+r \\
\sqrt[9]{\frac{175}{152}-1} & =r \\
\sqrt{9} &
\end{aligned}
$$

6. Hugo begins a walking program by walking $1 / 2$ mile per day for one week. Each week thereafter he increases his mileage by 10%. After how many weeks is he walking more than 5 miles per day?

$$
\begin{gathered}
y=a(1+r)^{t} \\
\frac{5}{\frac{1}{2}}=\frac{\frac{1}{2}(1+.1)^{t}}{\frac{1}{2}} \\
\log 10=\log 1.1^{t} \\
\frac{\log 10}{\log 1.1}=\frac{t \log 1.1}{\log 1.1} \\
24.159 \approx t \\
25 \text { weeks }
\end{gathered}
$$

