15. The element plutonium-239 is highly radioactive. Nuclear reactors can produce and also use this element. If the half-life plutonium -239 s 24,360 years, what is the value of k for this element?

16. How long will it take for the rabbit population in \#13 to reach 65000?
$P=8 e^{.26 t}$
$\frac{65}{8}=\frac{8 e^{.26 t}}{8}$
$\ln 8.125=\ln e^{.26 t}$
$\frac{\frac{\ln 8.125}{.26}=\frac{.26 t}{.26}}{y_{r S} \approx t}$

The population of rabbits in an area is modeled by the growth equation $P=8 e^{0.26 t}$, where P is in thousands and t is in years. How many rabbits will here years?
7. A home was purchase i 2003 for $\$ 152,000$. In 2012, the home was worth $\$ 175,000$. To the nearest tenth of a percent, what was the rate of inflation per year?

$$
\begin{aligned}
& y=a(1+r)^{t} \\
& \frac{175,000}{152,00 d}=\frac{152,000(1+r)^{9}}{152,000} \\
& \sqrt[9]{\frac{175}{152}}=\sqrt[9]{(1+r)^{9}} \\
& \sqrt[9]{\frac{9}{\frac{175}{152}}}=1+r \\
&=r \\
& \frac{9}{152}-1=r
\end{aligned}
$$

8. An investment is now worth $\$ 4500$. If the rate of increase was 5.3% over 4 years, how much was originally invested? $\quad y=a(1 \text { tr })^{t}$

$$
\frac{4500}{1.053^{4}}=\frac{a(1+.053)^{4}}{(1.053)^{4}}
$$

