Given $f(x)=\underline{x^{2}-3 x+1}$ and $g(x)=\underline{4 x+5}$, find each function.

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x)=\left(x^{2}-3 x+1\right)+(4 x+5) \\
& =x^{2}-3 x+1+4 x+5 \\
& (f+g)(x)=x^{2}+x+6 \\
& (f-g)(x)=f(x)-g(x)=\left(x^{2}-3 x+1\right)-(4 x+5) \\
& =x^{2}-3 x+1-4 x-5 \\
& (f-g)(x)=x^{2}-7 x-4= \\
& (f \cdot g)(x)=f(x) \cdot g(x)=\left(x^{2}-3 x+1\right)(4 x+5) \\
& =4 x^{3}+5 x^{2}-12 x^{2}-15 x+4 x+5 \\
& (f \circ g)(x)=4 x^{3}-7 x^{2}-11 x+5 \\
& \left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0 \neq \frac{x^{2}-3 x+1}{4 x+5}, x \neq-\frac{5}{4} \\
& 4 x+5=0 \\
& 4 x=-5 \\
& x=\frac{-5}{4}
\end{aligned}
$$

February 112013 3rd.gwb - 2/3 - Mon Feb 112013 10:27:49
Composition of furctims

$$
[f \circ g](x)=f[g(x)] \cdot=f(g(x))
$$

f of g of x

$$
\begin{aligned}
& f(x)=x+3 \\
& f(2)=2+3=5 \\
& f(y)=y+3 \\
& f(m-7)=(m-7)+3=m-4 \\
& f(x)=x+4 \\
& {[f \circ g](x)=f[q(x)]} \\
& g(x)=2 x-1 \\
& {[g \circ f](x)=\underline{g}[f(x)]}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[f \circ g(x)=f^{\circ}[g(x)]\right.} \\
& =f(x+2)=3(x+2)-5 \\
& =3 x+6-5 \\
& {[f \circ g](x)=3 x+1} \\
& \text { (} g \circ f f(x)=g[\underline{f(x)}] \\
& =g(3 x-5)=(3 x-5)+2 \\
& {[9 \circ 7(x)=3 x-3}
\end{aligned}
$$

