(1) Given $f(x)=x^{2}-3 x+1$ and $g(x)=4 x+5$, find each function.

$$
\begin{aligned}
(f+g)(x)=f(x)+g(x) & =\left(x^{2}-3 x+1\right)+(4 x+5) \\
& =x^{2}-3 x+1+4 x+5 \\
(f+g)(x) & \left.=x^{2}+x+6\right) \\
(f \cdot g)(x)=f(x)-g(x) & =\left(x^{2}-3 x+1\right)-(4 x+5) \\
& =x^{2}-3 x+1-4 x-5 \\
(f-g)(x) & =x^{2}-7 x-4 \\
(f \cdot g)(x)=f(x) \cdot g(x) & =\left(x^{2}-3 x+1\right)(4 x+5) \\
& =4 x^{3}+5 x^{2}-12 x^{2}-15 x+4 x+5 \\
(f \cdot g)(x) & =4 x^{3}-7 x^{2}-11 x+5 \\
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)} & =\frac{x^{2}-3 x+1}{4 x+5}, x \neq-\frac{5}{4} \\
4 x+5 & =0 \\
4 x & =-5 \\
x & =\frac{-5}{4}
\end{aligned}
$$

Composition of Functions

$$
\begin{aligned}
& \begin{array}{l}
\quad[f \circ g](x)=f[g(x)] \cdot=f(g(x)) \quad f(x)=x+2 \\
f \text { of } g \text { of } x
\end{array} \\
& f(-4)=-4+2=-2 \\
& f(x)=2 x+4 \quad g(x)=x-7 \\
& f(n)=n+2 \\
& {[f \circ g](x)=f[g(x)] \quad[g \circ f](x)=g[f(x)]} \\
& f(y-3)=(x-3)+2 \\
& =y-1 \\
& =f(\underline{x-2})=2(x-7)+4 \\
& =2 x-14+4 \\
& {[f \circ g](x)=2 x-10} \\
& =g(2 x+4)=(2 x+4)-7 \\
& {[g \circ f](x)=2 x-3}
\end{aligned}
$$

p. 389-390
(15-16, 28-31), 33-42,
$46-47,56-57$

