35.

$$
\begin{gathered}
\cot \theta=-\frac{4}{3}, 270^{\circ}<\theta<360^{\circ} ; \sin \theta \\
1+\left(-\frac{4}{3}\right)^{2}=\csc ^{2} \theta \\
\frac{9}{9}+\frac{16}{9}=\csc ^{2} \theta \\
\pm \sqrt{\frac{25}{9}}=\sqrt{\csc ^{2} \theta} \\
-\frac{5}{3}=\csc \theta \\
-\frac{3}{5}=\sin \theta
\end{gathered}
$$

$$
\begin{aligned}
& \text { 51. } 1+\cot ^{2} \theta-\cos ^{2} \theta-\cos ^{2} \theta \cot ^{2} \theta \\
& \csc ^{2} \theta-\cos ^{2} \theta-\cos ^{2} \theta \cot ^{2} \theta \quad 1+\cot ^{2} \theta=\csc ^{2} \theta \\
& \csc ^{2} \theta-\cos ^{2} \theta\left(1+\cot ^{2} \theta\right) \\
& \frac{\csc ^{2} \theta-\cos ^{2} \theta \csc \cos ^{2} \theta}{\csc ^{2} \theta\left(1-\cos ^{2} \theta\right)} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& \frac{1}{\sin ^{2} \theta} \sin ^{2} \theta \\
& \csc ^{2} \theta-\cos ^{2} \theta \frac{1}{\sin ^{2} \theta} \\
& \frac{\sin ^{2} \theta}{\sin ^{2} \theta} \\
& \csc ^{2} \theta-\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& \cot ^{2} \theta=\frac{\cos ^{2} \theta}{\sin ^{2} \theta} \\
& 11 \csc ^{2} \theta-\cot ^{2} \theta \\
& 1+\cot ^{2} \theta \cdot-\csc ^{2} \theta \\
& -\cot t^{2} \cot \theta \\
& 1=\csc ^{2} \theta \text {. } \\
& \cot ^{2} \theta
\end{aligned}
$$

