If $f(x)=4 x, g(x)=2 x-1$, and $h(x)=x^{2}+1$.
42. $[g \circ(f \circ h)](3)$

$$
\begin{aligned}
& h(3)=3^{2}+1=10 \\
& f[4(13)]=f(10)=4(10)=40 \\
& g(\underline{f[h(3) 7)})=g(40)=2(40)-1-79)
\end{aligned}
$$

31. $g(\underline{x})=\underline{x}-4$
$h(x)=3 x^{2}$

$$
\begin{aligned}
{[g \circ h](x)=g[h(x)]=g\left(3 x^{2}\right) } & =3 x^{2}-4 \\
{[L \circ g](x)=h[g(x)]=h(x-4) } & =3(x-4)^{2} \\
& =3(x-4)(x-4) \\
& =3\left(x^{2}-4 x-4 x+16\right) \\
& =3 x^{2}-12 x-12 x+48 \\
(h \circ g(x) & =3 x^{2}-24 x+48
\end{aligned}
$$

$$
\begin{aligned}
& \text { n } b(x)=-8 x+4045 \text {, and th } \quad P=b-d \\
& \text { function } d(x)=24 x+2160, \quad P(x)=b(x)-d(x) \\
& \begin{aligned}
P(x) & =(-8 x+4045)-(24 x+2160) \\
& =-8 x+4045-24 x-2160 \\
P(x) & =-32 x+1885
\end{aligned}
\end{aligned}
$$

$$
\text { (15) }\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{2 x-3}{4 x+9}, x \neq \frac{-9}{4}
$$

