February 132013 6th.gwb - 1/5 - Wed Feb 132013 12:43:37

$$
\begin{aligned}
& 1 \cdot \frac{\cot A}{\tan A}=\frac{\cot A}{\frac{1}{\cot A}}=\cot A \cdot \frac{\cot A}{1}=\left(\cot ^{2} A\right) \\
& \frac{\frac{\cos A}{\sin A}}{\frac{\sin A}{\cos A}}=\frac{\cos A}{\sin A} \cdot \frac{\cos A}{\sin A}=\frac{\cos ^{2} A}{\sin 2}=\cot ^{2} A
\end{aligned}
$$

2. $\cos x+\sin x \tan x$

$$
\cos x+\sin \frac{\sin x}{\cos x}
$$

$$
\frac{\cos x}{\cos x} \frac{\cos x}{1}+\frac{\sin ^{2} x}{\cos x}
$$

$$
\frac{\cos ^{2} x}{\cos x}+\frac{\sin ^{2} x}{\cos x}
$$

$$
\frac{\cos ^{2} x+\sin ^{2} x}{\cos x}
$$

$$
\frac{\frac{1}{\cos x}}{\sec x}
$$

February 132013 6th.gwb - 2/5 - Wed Feb 132013 12:47:06

$$
\begin{aligned}
& \text { 5. }(1+\cos \theta)(\csc \theta-\cot \theta) \\
& (1+\cos \theta)\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right) \\
& \csc \theta-\cot \theta+\cos \theta \csc \theta-\cos \theta \cot \theta \\
& \cos \theta \frac{1}{\sin \theta}-\cos \theta \frac{\cos \theta}{\sin \theta} \\
& \csc \theta-\frac{\cos \theta}{\cos \theta}+\frac{\cot \theta}{\cot \theta}-\frac{\cos ^{2} \theta}{\sin \theta} \\
& \left(\frac{1+\cos \theta)}{1}\left(\frac{1-\cos \theta}{\sin \theta}\right)\right. \\
& \frac{1-\cos ^{2} \theta}{\sin \theta} \\
& \frac{1}{\sin \theta}-\frac{\cos ^{2} \theta}{\sin \theta} \\
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \sin ^{2} \theta=1-\cos ^{2} \theta
\end{aligned}
$$

$$
\begin{gathered}
\frac{1-\cos x}{1-\cos x} \frac{\sin x}{1+\cos x}+\frac{\sin x}{1-\cos x} \frac{1+\cos x}{1+\cos x} \\
\frac{\sin x-\sin x \cos x}{1-\cos ^{2} x}+\frac{\sin x+\sin x \cos x}{1-\cos ^{2} x} \\
\frac{\sin x-\sin x \cos x+\sin x+\sin x \cos x}{1-\cos ^{2} x} \\
\frac{2 \sin ^{2} x}{\sin ^{2} x} \\
\frac{2}{\sin x}=2\left(\frac{1}{\sin x}\right) \\
2 \cos x
\end{gathered}
$$

$$
\begin{aligned}
& \text { 6. } \frac{\cos ^{4} \theta+2 \cos ^{2} \theta \sin ^{2} \theta-\sin ^{4} \theta \underline{\sin ^{2} \theta+\cos ^{2} \theta=1}}{} \begin{array}{l}
\frac{\cos ^{2} \theta\left(-\sin ^{2} \theta\right.}{\left(\cos ^{2} \theta+2 \sin ^{2} \theta\right)-\sin ^{4} \theta} \\
\begin{array}{c}
\left(1-\sin ^{2} \theta\right)\left(1-\sin ^{2} \theta+2 \sin ^{2} \theta\right)-\sin ^{4} \theta
\end{array} \\
\frac{\left(1-\sin ^{2} \theta\right)\left(1+\sin ^{2} \theta\right)-\sin ^{4} \theta}{1-\sin ^{4} \theta-\sin ^{4} \theta} \\
1-2 \sin ^{4} \theta \\
(x+1)(x+1) \mid\left(x^{2}+1\right)\left(x^{2}+1\right)
\end{array} \\
& \frac{1}{\left(\cos ^{4} \theta+2 \cos ^{2} \theta \sin ^{2} \theta+1 \sin ^{4} \theta\right.} \\
& \left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\cos ^{2} \theta+\sin ^{2} \theta\right) \\
& 1
\end{aligned}
$$

