$$
\begin{aligned}
& \frac{\cot x}{\cos x}=2 \\
& \frac{\frac{\cos x}{\sin x}}{\frac{\cos x}{1}}=2 \\
& \frac{\cos x}{\sin x} \cdot \frac{1}{\operatorname{ses} x}=2 \\
& \frac{1}{\sin x}=2 \\
& \frac{\operatorname{sic} x=2}{\sin x}=2 \\
& \\
& \\
& \frac{1}{2}=2 \sin x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1+\cos x}{1+\cos x} \cdot \frac{1+\cos x}{\sin x}+\frac{\sin x}{1+\cos x} \frac{\sin x}{\sin x} 4 \\
& \frac{1+2 \cos x+\cos ^{2} x+\sin ^{2} x}{\sin x(1+\cos x)}=4 \\
& -\frac{2+2 \cos x}{\sin x(1+\cos x)}=4 \\
& \frac{2(1+\cos x)}{\sin x(1+\cos x)}=4 \\
& \frac{2}{\sin x}=4 \\
& 2 \csc x=4 \quad \frac{1}{2}=\sin x \\
& 2=4 \sin x
\end{aligned}
$$

p. 434-436
$13-35$ odd, 53

