(1) S

$$
\begin{aligned}
& \sin x=\frac{2}{3}, \cos x \\
&\left(\frac{2}{3}\right)^{2}+\cos ^{2} x=1-\frac{4}{9} \\
& \cos ^{2} x=\frac{5}{9} \\
& \cos x=\frac{\sqrt{5}}{3}
\end{aligned}
$$

$$
0^{\circ}<x<90^{\circ}
$$

(2) $\tan x=\frac{7}{2}, \sin x$

$$
\begin{array}{ll}
\underset{\cot x=\frac{2}{7}}{ } & 1+\left(\frac{2}{7}\right)^{2}=\csc ^{2} x \\
& 1+\frac{4}{49} \\
\sin x=\frac{7}{\sqrt{53}} \\
\sin x=\frac{7 \sqrt{53}}{53}
\end{array} \quad \begin{aligned}
& \frac{53}{49}=\csc ^{2} x \\
& \frac{\sqrt{53}}{7}=\csc x
\end{aligned}
$$

$$
\begin{aligned}
& \sin ^{2} y+\cos ^{2} y=1 \\
& \left(\frac{9}{41}\right)^{2}+\cos ^{2} x=1 \\
& -\frac{81}{1681} \\
& \cos ^{2} x=\frac{1600}{1681}
\end{aligned} \begin{gathered}
\left(\frac{7}{25}\right)^{2}+\cos ^{2} y=1 \\
\cos x=\frac{49}{625} \\
\cos ^{2} y=\frac{49}{625} \\
\cos y=\frac{526}{625}
\end{gathered}
$$

$$
\begin{aligned}
\sin (x-y) & =\sin x \cos y-\cos x \sin y \\
& =\left(\frac{9}{41}\right)\left(\frac{24}{25}\right)-\left(\frac{40}{41}\right)\left(\frac{7}{25}\right) \\
& =\frac{216}{1025}-\frac{280}{1025} \\
& =-\frac{64}{1025}
\end{aligned}
$$

$\left.\begin{array}{ll}\text { Fin }(x+y) \\ \cos (x+y) \\ \sin x=\frac{4}{9}\end{array}\right)$ and $\sin y=\frac{1}{4} \quad \begin{aligned} & O<x<\frac{\pi}{2} \\ & 0<y<\frac{\pi}{2}\end{aligned}$

$$
\begin{array}{rlr|r}
\cos (x+y) & =\cos x \cos y-\sin x \sin y & & \left(\frac{4}{9}\right)^{2}+\cos ^{2} x=1 \\
& =\left(\frac{\sqrt{65}}{9}\right)\left(\frac{\sqrt{15}}{4}\right)-\left(\frac{4}{9}\right)\left(\frac{1}{4}\right) & -\frac{16}{81} & \left(\frac{1}{4}\right)^{2}+\cos ^{2} y=1 \\
& =\frac{\sqrt{975}-4}{36} & \sqrt{975} & -\frac{1}{16} \\
& =\frac{\sqrt{95}}{16} & \cos ^{2} x=\frac{65}{81} & \cos ^{2} y=\frac{15}{16} \\
& =\frac{\sqrt{35} \sqrt{39}}{36} & \cos x=\frac{\sqrt{65}}{9} & \cos y=\frac{\sqrt{15}}{4}
\end{array}
$$

$$
\begin{aligned}
& \text { 9. } \tan (x+y) \text { if } \csc x=\frac{5}{3} \text { and } \cos y=\frac{5}{13} \longrightarrow \sec y=\frac{13}{5} \text {. } \\
& \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
& \left.\left.\right|_{-1} ^{1}+\cot ^{2} x=\left(\frac{5}{3}\right)^{2}-1 \right\rvert\, \tan ^{2} y+1=\left(\frac{13}{5}\right)^{2}-1 \\
& =\frac{5}{20} \neq 14+\frac{1 \neq \frac{48}{20}}{20} \\
& \cot ^{2} x=\frac{16}{9} \\
& \cot x=\frac{4}{3} \\
& \tan x=\frac{3}{4} \\
& =\frac{\frac{63}{20}}{-\frac{16}{20}}=\frac{63}{20} \cdot-\frac{26}{16}=-\frac{63}{16} \\
& \text { p. } 445 \text { mid-Ch. Qniz } \\
& 9-10
\end{aligned}
$$

Quiz Munday

$$
7.1-7.3
$$

