$$
\begin{array}{r}
\sin x=\frac{2}{3}, \cos x \\
\left(\frac{2}{3}\right)^{2}+\cos ^{2} x=1-\frac{4}{9} \\
\cos 2 x=\frac{5}{9} \\
\cos x=\frac{\sqrt{5}}{3}
\end{array}
$$

$$
\begin{aligned}
& \text { (2) } \tan x=\frac{7}{2}, \sin x \\
& \cot x=\frac{2}{7} \\
& 1+\left(\frac{2}{7}\right)^{2}=\csc ^{2} x \\
& \sin x=\frac{7}{\sqrt{53}} \ll 1+\frac{4}{44}= \\
& \sin x=\frac{7 \sqrt{53}}{53} \quad \begin{array}{l}
\frac{53}{49}=\csc ^{2} x \\
\frac{\sqrt{53}}{7}
\end{array}=\csc x
\end{aligned}
$$

3 Find the value of $\sin (x-y)$ if $0<x<\frac{\pi}{2}, 0<y<\frac{\pi}{2}, \sin x=\frac{9}{41}$, and
$\sin y=\frac{7}{25}$.

$$
\begin{aligned}
\sin (x-y) & =\sin x \cos y-\cos x \sin y \\
& =\left(\frac{9}{41}\right)\left(\frac{24}{25}\right)-\left(\frac{40}{41}\right)\left(\frac{7}{25}\right) \\
& =\frac{216}{102.5}-\frac{280}{1025} \\
& =-\frac{64}{1025}
\end{aligned}
$$

$$
\begin{array}{l|l}
\sin ^{2} x+\cos ^{2} x=1 \\
\left(\frac{9}{41}\right)^{2}+\cos ^{2} x=1 \\
-\frac{81}{1681} & -\frac{81}{1681} \\
\cos 2 x=\frac{1600}{1681} & \left.-\frac{79}{625}\right)^{2}+\cos ^{2} y=1 \\
\cos x=\frac{40}{41} & \cos 2 y=\frac{576}{625} \\
\cos y=\frac{24}{25}
\end{array}
$$

9. $\tan (x+y) \mathrm{ff} \csc x=\frac{5}{3}$ and $\cos y=\frac{5}{13}$

$$
\begin{aligned}
& \tan (x+y)=\frac{\tan x+\tan y}{1-\tan x \tan y} \\
&=\frac{15}{20} \frac{y}{41}+\frac{188}{20} \\
& 1-\left(\frac{3}{4}\right)\left(\frac{12}{5}\right) \frac{36}{20}
\end{aligned}
$$

$$
\cot ^{2} x=\frac{16}{9}
$$

$$
\begin{aligned}
& \tan ^{2} y+1=\left(\frac{13}{5}\right)^{2}-1 \\
&-1 \quad \frac{169}{25} \\
& \tan ^{2} y=\frac{144}{25} \\
& \tan y=\frac{12}{5}
\end{aligned}
$$

$$
\frac{\frac{63}{20}}{-\frac{16}{20}}=\frac{63}{20} \cdot \frac{26}{16}=-\frac{63}{16}
$$

p. 445 Mid-Ch. Quiz

9-10

Quiz monday

$$
7.1-7.3
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Find } \\
\cos (x+y) \quad \sin x=\frac{4}{9} \text { and } \sin y=\frac{1}{4}
\end{array} \\
& \cos (x+y)=\cos x \cos y-\sin x \sin y \\
& =\left(\frac{\sqrt{65}}{9}\right)\left(\frac{\sqrt{15}}{4}\right)-\left(\frac{4}{9}\right)\left(\frac{1}{4}\right) \\
& \begin{array}{ll}
=\frac{\sqrt{975}-4}{36} \\
=\frac{5 \sqrt{39}-4}{36}
\end{array} \quad \begin{array}{l}
\sqrt{975} \\
\sqrt{25} \sqrt{39}
\end{array} \\
& \left|\begin{array}{rl}
\left(\frac{4}{9}\right)^{2}+\cos ^{2} x & =1 \\
-\frac{36}{81} & -\frac{36}{81} \\
\cos ^{2} x & =\frac{65}{81} \\
\cos x & =\frac{\sqrt{65}}{9}
\end{array}\right| \\
& \left(\frac{1}{4}\right)_{-\frac{1}{16}}^{2}+\cos ^{2} y=1_{-\frac{1}{16}} \\
& \cos ^{2} y=\frac{15}{16} \\
& \cos y=\frac{\sqrt{15}}{16}
\end{aligned}
$$

