29.
$$\cos (x + y)$$
 if $\tan x = \frac{5}{3}$ and $\sin y = \frac{1}{3}$

28.
$$\tan (x - y)$$
 if $\sin x = \frac{8}{17}$ and $\cos y = \frac{3}{5}$

$$\tan^2 y + 1 = \left(\frac{5}{3}\right)^2 - 1$$

$$\tan^2 y = \frac{16}{9}$$

$$\tan^2 y = \frac{4}{3}$$

38.
$$\tan (x + 45^{\circ}) = \frac{1 + \tan x}{1 - \tan x}$$

$$tan (x + 45^{\circ}) = \frac{1 + \tan x}{1 - \tan x}$$

$$\frac{tan x + tan 45}{1 - tan x + tan 45} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1 + tan x}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan x}$$

$$\frac{1}{1 - tan x} = \frac{1 + tan x}{1 - tan$$

Section 7.3 Daily Quiz #2 Quiz Monday (see below)

Use sum/difference identities to find the exact values.

1.
$$tan(x + y)$$
 if $tan x = \frac{8}{15}$ and $tan y = \frac{4}{3}$

2.
$$cos(x + y)$$
 if $csc y = \frac{13}{5}$ and $sec x = \frac{25}{7}$
Quiz Monday
over Sections 7.1-7.3