(13)

$$
\begin{aligned}
& f(x)=\frac{x^{2}-5 x+4}{x}, x \neq 0 \\
& f^{\prime}(x)=\frac{(2 x-5) x \cdot \frac{1}{\left(x^{2}-5 x+4\right)}}{x^{2}}=\frac{x^{2}-4}{x^{2}} \frac{\text { crit.t's }}{2,-2} \\
& f^{\prime \prime}(x)=\frac{2 x\left(x^{2}\right)-\left(x^{2}-4\right)(2 x)}{x^{4}}=\frac{8 x}{x^{4}} \quad f^{\prime}(x)=0 \\
& f^{\prime \prime}(2)=\frac{8(2)}{2^{4}} \rightarrow \text { pos. } \quad x=2 \text { min } \\
& f^{\prime \prime}(-2)=\frac{8(\cdot 2)}{(-2)^{4}} \rightarrow \text { neq } \quad x=-2 \text { max }
\end{aligned}
$$

(15)

$$
\begin{aligned}
& f(x)=\left(x^{2}+1\right)^{2 / 3} \\
& f^{\prime}(x)=\frac{2}{3}\left(x^{2}+1\right)^{-1 / 3}(2 x)=\frac{4 x}{3}\left(x^{2}+1\right)^{-1 / 3}=\frac{4 x}{3\left(x^{2}+1\right)^{1 / 3}} \quad \begin{array}{l}
\frac{\text { critf's }}{x=0} \\
f^{\prime}(x) \\
f^{\prime \prime}(x)=\frac{4}{3}\left(x^{2}+1\right)^{-1 / 3}+\frac{4 x}{3}\left(-\frac{1}{3}\right)\left(x^{2}+1\right)^{-4 / 3}(2 x) \\
3\left(x^{2}+1\right) \\
3\left(x^{2}+1\right)
\end{array} \frac{4}{3\left(x^{2}+1\right)^{1 / 3}}-\frac{8 x^{2}}{9\left(x^{2}+1\right)^{4 / 3}} \\
& f^{\prime \prime}(x)=\frac{12 x^{2}+12-8 x^{2}}{9\left(x^{2}+1\right)^{4 / 3}}=\frac{4 x^{2}+12}{9\left(x^{2}+1\right)^{4 / 3}} \quad \Rightarrow \text { always } \\
& \text { concave up }
\end{aligned}
$$

$$
f(0)=1
$$

