$$
\begin{aligned}
& x^{2}+y^{2}=1^{2} \\
& \cos \theta=x \\
& \begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \\
-\sin ^{2} \theta & -\sin 2 \theta
\end{aligned} \\
& \sin \theta=y \\
& \cos ^{2} \theta=1-\sin ^{2} \theta \quad \cos ^{2} \theta=(\cos \theta)^{2} \\
& \sin ^{2} \theta=1-\cos ^{2} \theta \\
& -1-1 \\
& \sin ^{2} \theta-1=-\cos ^{2} \theta \\
& 17 \sin ^{2} \theta-17=-17 \cos ^{2} \theta \mid \\
& \frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \quad(\cot \theta)^{2}=\left(\frac{\cos \theta}{\sin \theta}\right)^{2} \\
& +\cot ^{2} \theta=\csc ^{2} \theta \\
& \frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \\
& \frac{1}{\sin ^{2} \theta}=\csc ^{2} \theta \\
& \begin{array}{l}
\tan ^{2} \theta+1=\sec ^{2} \theta \quad \begin{array}{l}
\frac{\sin \theta}{\cos \theta}=\tan \theta \\
\frac{1}{\cos \theta}=\sec \theta
\end{array}
\end{array}
\end{aligned}
$$



