J anuary 102013 8th.gwb - 1/4 - Wed J an 092013 14:43:28
Probe Property

$$
x^{m} \cdot x^{n}=x^{m+n}
$$

$$
\begin{aligned}
& x^{8} \cdot x^{16}=x^{18} \\
& x^{7} \cdot x^{-3}=x^{4}
\end{aligned}
$$

Quotient Property

$$
\frac{x^{m}}{x^{n}}=x^{m-n}
$$

$$
\begin{aligned}
& \frac{x^{5}}{x^{2}}=\frac{1 x \cdot x \cdot x \cdot x \cdot x}{* \cdot x \cdot *=x^{3}} \\
& \frac{x^{\sqrt{5}}}{x^{8}}=x^{7 \cdot 1}
\end{aligned}
$$

Negative Exponent

$$
\begin{aligned}
& x^{-m}=\frac{1}{x^{m}} \\
& \frac{1}{x^{-m}}=x^{m}
\end{aligned}
$$

$$
x^{-4}=\frac{1}{x^{4}}
$$

$$
\frac{1}{y^{-3}}=y^{3}
$$

Power of a Power

$$
\left(x^{m}\right)^{n}=x^{m n} \quad\left(x^{2}\right)^{3}=x^{2} \cdot x^{2} \cdot x^{2}=x^{6}
$$

Power of a Product

$$
\begin{aligned}
& \begin{array}{l}
(x y)^{m}=x^{m} y^{m} \\
\text { Power of a Quotient }
\end{array} \\
& \left(\frac{x}{y}\right)^{m}=\frac{x^{m}}{y^{m}} \quad\left(\frac{x^{4}}{y^{5}}\right)^{2}=\frac{x^{8}}{y^{10}} \\
& \left(\frac{x}{y}\right)^{-m}=\left(\frac{y}{x}\right)^{m}=\frac{y^{m}}{x^{m}} \\
& \triangleq=\frac{x^{-m}}{y^{-m}}=\frac{y^{m}}{X^{m}} \\
& \begin{array}{lll}
\text { Zero power } & y^{\times} & S^{0}=1 \\
X^{0}=1 & \sim & D D^{0}=1
\end{array} \\
& \begin{array}{ll}
2 x_{1}^{6} y^{2} z^{6}=2 y^{2} & 127^{0}=1 \\
(-12)^{0}=1
\end{array}
\end{aligned}
$$

J anuary 102013 8th.gwb - 2/4 - Thu J an 102013 14:36:31
ex $\left(-5 x^{3} y^{4}\right)\left(2 x^{7} y^{-3}\right)=-10 x^{10} y$
$-5 \cdot 2 x^{3} \cdot x^{7} \quad y^{4} \cdot y^{-3}$
p. 314 Study $T_{i p}$ - to simplify

- no power of a power
- each base appears exactly ance
- all fractions in simplest form
- no negative exponents

$$
\begin{aligned}
& \text { ex.B } \begin{array}{l}
\left(-2 x^{4} y^{-2}\right)^{3}=-8 x^{12} y^{-6}=\frac{-8 x^{12}}{y^{6}} \\
(-2)^{3}\left(x^{4}\right)^{3}\left(y^{-2}\right)^{3} \\
\frac{15 m^{4} n^{6}}{-3 m^{7} n^{2}}=-5 m^{-3} n^{4}=\frac{-5 n^{4}}{m^{3}} \\
\frac{5}{-3} \frac{m^{4}}{m^{2}} \frac{n^{2}}{n^{2}} \\
\left(\frac{8 x^{8} y^{6}}{2 x x^{2} y^{2} z^{2}}\right)^{3}=\left(\frac{4 x^{6} y^{4}}{z^{2}}\right)^{3}=\frac{64 x^{18} y^{12}}{z^{6}}
\end{array}
\end{aligned}
$$

J anuary 102013 8th.gwb - 3/4 - Thu J an 102013 14:52:34

$$
\begin{aligned}
& =\frac{45 x^{9} y^{3}}{7 z^{12}} \\
& \frac{8^{9175}}{8^{9173}}=8^{2}=64 \\
& 10^{5} \cdot 10^{12}=10^{17} \\
& \frac{10^{12}}{10^{5}}=10^{7}
\end{aligned}
$$

