$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x-1}{x^{2}-2 x+1}=\lim _{x \rightarrow 1} \frac{x^{\prime}-1}{(x, 1)(x-1)}=\lim _{x \rightarrow 1} \frac{1}{x-1}=\infty \\
& \lim _{x \rightarrow \infty} \frac{x^{2}+1}{x^{3}+5}=\lim _{x \rightarrow \infty} \frac{\left(x^{2}+1\right)\left(\frac{1}{x^{3}}\right)}{\left(x^{3}+5\right)\left(\frac{1}{x^{2}}\right)}=\lim _{x \rightarrow \infty} \frac{\frac{x^{0}}{x}+\frac{1}{x^{2}}}{1+\frac{\sqrt{x} 3^{3}}{0}}=\frac{0}{1}=0 \\
& \frac{\frac{x^{2}}{x^{3}}+\frac{1}{x^{3}}}{\frac{x^{7}}{x^{7}}+\frac{5}{x^{3}}} \\
& \lim _{x \rightarrow \infty} \frac{x^{3}+5}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{\frac{x^{3}}{x^{2}}+\frac{x^{2}}{x^{2}}}{\frac{x^{2}}{x^{2}}+x_{0}^{1}}=\lim _{x \rightarrow \infty} \frac{x}{1}=\infty \\
& \lim _{x \rightarrow \infty} \sqrt{\frac{2}{x} x^{2}+3 x-5} 1 x^{2}+4 x-11 \quad=\lim _{x \rightarrow \infty}\left(\frac{27 \frac{3}{x}-\frac{5}{x}}{1+\frac{4}{x}-\frac{11}{x^{2}}}=\frac{2}{1}=2\right. \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0} \\
& \lim _{x \rightarrow a} \frac{f(x)}{g(x)} \text {, if } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \\
& \left(\begin{array}{rl}
L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) & \text { diff. at } x=c \\
f(c)=\lim _{x \rightarrow c} f(x) \geq 0 & \text { cant at } x=c \\
g(c)=\lim _{x \rightarrow 6} g(x)=0 &
\end{array}\right. \\
& \begin{array}{l}
f(x)=f(c)+f^{\prime}(c)(x-c)=f^{\prime}(c)(x-c) \\
g(x)=g^{\prime}(c)+g^{\prime}(c)(x-c)=g^{\prime}(c)(x-c)
\end{array} \\
& \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(c)(x-c)}{g^{\prime}(c)(x-c)}=\lim _{x \rightarrow c} \frac{f^{\prime}(c)}{g^{\prime}(c)} \\
& \text { L'Hupital's Rule } \\
& \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
\end{aligned}
$$

(ex.1) $\lim _{x \rightarrow 0} \frac{1-\cos x}{\sin x}=\lim _{x \rightarrow 0} \frac{\sin x}{\cos x}=\frac{0}{1}=0$
(ex.2) $\lim _{x \rightarrow \infty} \frac{e^{x}}{x}=\lim _{x \rightarrow \infty} \frac{e^{x}}{1}=\operatorname{lin}_{\text {dne }}^{\infty}$
ex.3 $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2 x}{e^{x}}=\lim _{x \rightarrow \infty} \frac{2}{e^{x}}=0$

$$
\begin{aligned}
& \text { (ex.5 } \lim _{x \rightarrow 0^{+}} \frac{\ln x}{\csc x}=\lim _{x \rightarrow 0^{+}} \frac{\frac{1}{x}}{-\csc x \cot x}>\frac{\ln x}{\frac{1}{\sin x}}=\ln x \sin x \\
& \frac{\frac{1}{x}}{-\frac{1}{\sin x \tan x}}=-\frac{\sin x \tan x}{x}=-\frac{\sin x}{x} \tan x \\
& \lim _{x \rightarrow 0^{+}}\left(-\frac{\sin x}{x} \tan x\right)=-1(0)=0
\end{aligned}
$$

