$$
\begin{aligned}
& y=A \sin (k \theta-c)+h \\
& y=A \cos (k \theta-c)+h \\
& \text { Vert. Shift = h } \\
& \text { Phase Shift }=\frac{c}{k} \\
& \underset{c>0 \text { right }}{2 \cos \operatorname{lic}_{k}} \begin{array}{c}
-5 \\
h
\end{array} \\
& \text { c<0 left }
\end{aligned}
$$

X. state the vertical shift and the equation of the midline for the function $y=2 \cos \theta-5$. Then graph the function.

$$
\begin{aligned}
& =2 \cos \theta-5 \text {. Then graph the function. } \\
& A=2 \\
& h=-5 \\
& K=1
\end{aligned}
$$

ex.1b. $y=\cos \left(2 \theta-\frac{\pi}{2}\right) \quad A=1 \quad c=\frac{\pi}{2}$
ex.h. $y=\cos \left(2 \theta-\frac{\pi}{2}\right) \quad k=2 \quad h=0$
V.S. $=0 \quad$ Ampl $=1 \quad$ Period $=\frac{2 \pi}{2}=\pi \quad$ P.S $=\frac{-1 / 2}{\frac{2}{2}}=\frac{\pi}{4}$

J anuary 102013 7th.gwb - 3/5 - Thu J an 102013 14:02:16

$$
\begin{aligned}
& \begin{array}{lll}
\boldsymbol{y}=4 \cos \left(\frac{\boldsymbol{\theta}}{2}+\pi\right)-6 . & A=4 & C=-\pi \\
& K=\frac{1}{2} & h=-6
\end{array} \\
& V_{1} S_{S}=-6 \quad \text { Ampl }=4 \quad \text { Per }=\frac{2 \pi}{1 / 2}=4 \pi \quad \text { P. } S=\frac{-\pi}{1 / 2}=-2 \pi \\
& \text { p. } 382 \text { ex, } 5
\end{aligned}
$$

$$
\begin{aligned}
& y=A \sin (k \theta-c)+h \\
& y= \pm 4 \sin \left(2 \theta+\frac{\pi}{4}\right)+6 \\
& \text { Per }=\frac{2 \pi}{K} \quad \text { P.S. }=\frac{c}{K} \\
& \begin{array}{ll}
\pi=\frac{2 \pi}{K} & 2\left(\frac{-\pi}{8}\right) \\
K=2 & -\frac{c}{8} \\
K & (2)
\end{array} \\
& K=2-\frac{2 \pi}{8}=c \\
& -\frac{\pi}{4}=c
\end{aligned}
$$

$$
\begin{array}{ll}
h=2.9+2.2 \sin \left(\frac{\pi}{6.2} t-\frac{4.85 \pi}{6.2}\right), \quad \begin{array}{l}
A=2.2 \\
K=\frac{\pi}{6.2} \\
\\
C=\frac{4.85 \pi}{4.2} \\
\text { U.S. }=2.9 \quad \text { Ampl }=2.2 \quad \text { Per }=\frac{2 \pi}{J i .2}=1.4 .4 \\
L=29
\end{array}
\end{array}
$$

p. 383-386

14-15, 17-18, 21-23, 27-
$29,31-32,34-35,41$, 43, 54

