$$
\begin{array}{ll}
W=2000+1000 \sin \left(\frac{\pi t}{6}\right) & S=10,000+5000 \cos \left(\frac{\pi t}{6}\right) \\
V . S=2000 & \text { V.S. }=10,000 \\
A_{m p l}=1000 & \text { Ampl }=5,000 \\
\operatorname{Per}=\frac{2 \pi}{\pi / 6}=2 \pi \cdot \frac{6}{\pi}=12 & \text { Per } \frac{2 \pi}{\pi / 6}=12
\end{array}
$$

January 152013 6th.gwb - 2/3 - Tue J an 152013 12:48:21

2 HEALTH An average seated adult breathes in and out every 4 seconds. The average minimum amount of air in the lungs is 0.08 liter, and the average maximum amount of air in the lungs is $\mathbf{0 . 8 2}$ liter. Suppose the lungs have a minimum amount of air at $t=0$, where t is the time in seconds.

$$
\begin{align*}
& \text { Per }=4 \\
& \min =.08 \\
& \max =.82 \tag{b.}
\end{align*}
$$

$$
\min @ t=0
$$

$$
\begin{aligned}
& U . S=\frac{.08+.82}{2}=.45 \\
& A_{m p l}=\frac{.82 \div .08}{2}=.82=45=.45-.08=.37 \\
& \text { P. S. }=0^{2} \rightarrow C=0 \\
& \text { Per }=4=\frac{2 \pi}{k} \\
& k=\frac{2 \pi}{4} \\
& K=\frac{4}{2} \\
& \text { (a.) } y=A \cos (k t-c)+h \\
& \text { c. at } t=5.5 \\
& \begin{array}{c}
y=-37 \cos \left(\frac{\pi}{2}(5.5)\right)+.45 \\
y=7 \text { li.tes }
\end{array} \\
& y=.71 \text { liters }
\end{aligned}
$$

$$
\begin{aligned}
& y=A \cos (k t-c)+h \\
& \max =13.75 \\
& \min =10.53 \\
& A_{\text {apl }}=\frac{13.75-10.53}{2}=1.61 \\
& A \text { is neg } \\
& \text { V.S. }=\frac{13.75+10.53}{2}=12.14 \\
& \text { Per }=12=\frac{2 \pi}{k} \\
& k=\frac{2 \pi}{12} \sqrt{y=-1.6 \left\lvert\, \cos \left(\frac{\pi}{6} t-c\right)+12.14\right.} \\
& k=\left.\frac{\pi}{6}\right|_{-12.14} \left\lvert\, 13.75=-1.61 \cos \left(\frac{\pi}{6}(6)-c\right)+12.14\right. \\
& \frac{L .61}{-1.61}=\frac{-1.61 \cos (\pi-c)}{-1.61} \\
& -1=\cos (\pi-C) \\
& \cos ^{-1}(-1)=\pi-\pi \\
& \cos ^{-1}(-1)-\pi=-C
\end{aligned}
$$

