49
Tides In Daytona Beach, Florida, the first high tide w\&s 3.99 feet at 12:03 A.M. The first low tide of 0.55 foot occurred at 6:24 A.M. The second high tide)
occurred at 12:19 P.M. (Lesson 6-6)

$$
\begin{aligned}
& \text { a. } \text { Amp }=\frac{3.99-.55}{2}=1.72 \\
& \text { b. V.S. }=\frac{3.99+.55}{2}=2.27
\end{aligned}
$$

$$
\underset{\substack{3 m+h \\ \text { and er } \\ \text { minot }}}{30}=\frac{3}{60} \cdot h r=\frac{1}{20}=.05
$$

c. $12: 19^{\mathrm{pm}}-12: 03^{4 \mathrm{~m}}=12 \mathrm{hrs} .16 \mathrm{m.4}=12.3 \mathrm{hrs}$

$$
\text { d. } y=1.72 \cos \left(\frac{\pi}{6.15} t-c\right)+2.27
$$

$$
\begin{aligned}
& 12.3=\frac{2 \pi}{K} \\
& K=\frac{2 \pi}{12.3}=\frac{\pi}{6.15}
\end{aligned}
$$

$$
\begin{aligned}
& 3.99 . \\
& 2.27
\end{aligned}=1.72 \cos \left(\frac{\pi}{6.15}(.05)-c\right)+2.27
$$

$$
\frac{1.72}{1.72}=\frac{1.72 \cos \left(\frac{.05 \pi}{6.15}-c\right)}{1.72}
$$

$$
1=\cos \left(\frac{.05 \pi}{6.15}-c\right)
$$

$$
\cos ^{-1}(1)=\frac{.05 \pi}{6.15}-c
$$

$$
\left.0=\frac{.05 \pi}{6.15}-c \quad y=1.72 \cos \left(\frac{\pi}{6.15} t-\frac{.05 \pi}{6.15}\right)+2.22\right)
$$

$$
C=\frac{.05 \pi}{6.15}
$$

(47) a. Ampl $=220$

$$
I=220 \sin \left(\frac{60 \pi}{k}(t)-\frac{\pi}{6}\right)
$$

b. Per $=\frac{2 \pi}{60 \pi}=\frac{1}{30}$
c. P.S. $=\frac{\pi / 6}{\frac{60 \pi}{1}}=\frac{\pi}{6} \cdot \frac{1}{60 \pi}=\frac{1}{360}$
d. $y=220 \sin \left(60 \pi(60)-\frac{\pi}{6}\right)$

