1. State the amplitude, period, phase shift, and vertical shift.

$$
\begin{array}{lll}
y=\left[3 \left\lvert\,+2 \sin \left(\begin{array}{cc}
2 \theta & \left.-\frac{\pi}{2}\right)
\end{array}\right.\right.\right. & A=2 & k=2 \\
\text { Arp }=2 & C=\frac{\pi}{2} & h=3 \\
\text { V. S }=3 & \text { Period }=\frac{2 \pi}{2}=\pi \\
& \text { P.S. }=\frac{\pi / 2}{2 K}=\frac{\pi}{2} \cdot \frac{1}{2}=\frac{\pi}{4}
\end{array}
$$

3. Write an equation of sine function with the given values.

$$
\begin{aligned}
& \text { Ampl-5) Per }=\frac{\pi}{6} \quad \text { V.S. }=3 \\
& y=A \sin (k \theta-c)+h \\
& y= \pm 5 \sin (12 \theta-4 \pi)+3
\end{aligned}
$$

$$
\operatorname{Per}=\frac{\pi}{6}=\frac{2 \pi}{k}
$$

(12) $\frac{\pi}{3}=\frac{c}{12}(12)$

$$
\frac{\pi}{6} k=2 \pi
$$

$$
K=\frac{2 \pi}{\pi / 6}=\frac{2 \pi}{1} \cdot \frac{6}{\pi}=12
$$

$$
\begin{aligned}
\frac{12 \pi}{3} & =c \\
4 \pi & =c
\end{aligned}
$$



$$
\begin{array}{cc}
Y=-4 & \sin \left(\frac{\theta}{2}-\frac{\pi}{2}\right)-3 \\
\left.A_{\text {mp }}\right)=4 & \text { Pcrid }=\frac{2 \pi}{1 / 2}=4 \pi \\
\text { V.S. }=-3 & \text { P.S. }=\frac{\pi / 2}{1 / 2}=\frac{\pi}{2} \cdot \frac{2}{1}=\pi
\end{array}
$$



$$
\begin{aligned}
& \text { 1. A certainperson's blood pressure }(P) \text { oscillates between } 140 \text { and } 80 \text {. } 15 \text { theneart beats once every second, } \\
& \text { write esinefunction that models the person's blood pressure. Assume the blood pressure is at equilibiturn } \\
& \text { and is omits way up at } t=0 \text {. }
\end{aligned}
$$

2. The average monthly temperatures for the city of Seattle, Washington are given below.

d. Write a sinusoidal function that models the monthly temperatures, using $t=1$ to represent January.

$$
y= \pm 2.5(\sin / 162)\left(\frac{\pi}{6}(t)-c\right)+53.5
$$



$$
k=\frac{\pi}{6}
$$

