(1) $y=8 x^{4}+3 x^{3}+2 x^{2}-x+5$
(2) $y=-2 x^{3}+4 x^{2}+3$
(3) $y=8 x-9 x^{4}+3 x^{2}+8$
(4) $y=2 x^{4}+3 x^{3}+2 x^{5}-3 x^{2}+x+1$

For each graph,
a. - describe the end behavior,

$$
f(x) \rightarrow=\text {, as } x \rightarrow
$$

- determine whether it represents an odd-d\&gree or an even-dejgree polynomial function and
state the number of real zeros.
a.

a_{1} end belaviun

$$
\begin{aligned}
& \text { end belaviun } \\
& f(x) \rightarrow-\infty \text {, as } x \rightarrow \infty(\text { right side }) \\
& f(x) \rightarrow-\infty \text { as } x \rightarrow-\infty(\text { left side })
\end{aligned}
$$

b. even
c. 2
b.

- $f(x) \rightarrow \infty, a s x \rightarrow \infty$ $f(x) \rightarrow \infty, a s x>-\infty$
b. even
c. 0

