(1) $y=-8 x^{4}+2 x^{3}-4 x^{2}+2 x-9$
(2) $y=9 x^{5}+3 x^{4}-2 x^{3}+5$

$$
\begin{aligned}
& \text { (3) } y=2 x^{3}-3 x^{4}+5 x^{2}-3 x+5 x+2 \\
& \text { (4) }=4 x^{2}+6 \cdot 6+7 x-9
\end{aligned}
$$

(4) For each graph,

determine whether it represents an odd-degree or an even-degrees polynomial function, and

- state the number of real zeros.
a.

end behavion

$$
\begin{aligned}
& f(x) \rightarrow-\infty \text {, as } x \rightarrow \infty(\text { right sidelarow) } \\
& f(x) \rightarrow-\infty, \text { as } x \rightarrow-\infty(\text { lpft sidelarroun) } \\
& \text { even } \\
& 2
\end{aligned}
$$

J anuary 292013 3rd.gwb - 2/2 - Tue J an 292013 10:19:27

