(8)

$$
\begin{aligned}
& 4 x^{2}-2.40=0 \\
&+240=240 \\
& 4 x^{2}=240 \\
& \sqrt{x^{2}}=\sqrt{60} \sqrt{60} \\
&
\end{aligned}
$$

(3)

$$
\begin{aligned}
& y=x^{2} \Rightarrow \text { parant graph } \\
& \begin{array}{c|c}
x & y \\
\hline-2 & 4 \\
-1 & 1 \\
0 & 0 \\
1 & 1 \\
2 & 4 \\
\hline
\end{array} \\
& y=-x^{2} \\
& \begin{array}{l|l}
x & x \\
\hline-2 & -4
\end{array} \\
& \begin{array}{r|r}
-2 & -1 \\
-1 & 0
\end{array} \\
& \begin{array}{c|c}
0 & 0 \\
2 & -1 \\
2 & -4
\end{array}
\end{aligned}
$$

$$
\left.\begin{aligned}
& y=(x-3)^{2}=(x-3)(x-3) \\
& y=x^{2}-6 x+9 \\
& x \left\lvert\, y \quad-\frac{(-6)}{2(1)}=3\right. \\
& 1 \\
& 2
\end{aligned} \right\rvert\, 1 . \quad \begin{aligned}
& 3 \\
& 3
\end{aligned} 0
$$

$$
\begin{array}{ll}
y=(x+4)^{2} & y=(x-3) \\
\text { vertex }(-4,0) & (3,0)
\end{array}
$$

$$
\begin{aligned}
& y=(x+7)^{2} \\
& \text { vertex }(-7,0)
\end{aligned}
$$

J anuary 042013 2nd.gwb - 6/6 - Fri J an 042013 09:43:13

$$
\left.\begin{array}{l|l}
\hline \text { Vertex Form } \\
y=a(x-h)^{2}+K \\
\text { vertex }(h, k)
\end{array} \right\rvert\, y=a x^{2}+b x+c
$$

$$
\begin{aligned}
y= & 1(x-5)^{2}+2 \\
& \text { vertex }(5,2)
\end{aligned}
$$

$$
\text { axis: } x=5
$$

opens: up
min: 2

$$
\begin{aligned}
y= & -3(x+2)^{2}-4 \\
& -3(x-(-2))^{2}-4
\end{aligned}
$$

vertex $(-2,-4)$

$$
\begin{aligned}
& \text { axis's: } x=-2 \\
& \text { opens: down }
\end{aligned}
$$

