50. AEROSPACE NASA's KC135A aircraft flies in parabolic arcs to simulate the weightlessness experienced by astronauts in space. The height h of the aircraft (in feet) t seconds after it begins its parabolic flight can be modeled by the equation $h(t)=-9.09(t-32.5)^{2}+34,000$. What is the maximum height of the aircraft during this maneuver and when does it occur?

(41) $y=4 x^{2}+24 x$
$\begin{aligned} & 6=6 \\ & 2\end{aligned} y=4\left(x^{5}+6 x+9\right)-9(4)$

$$
\begin{aligned}
&(2,-1) \\
& y=a(x-h)^{2}+k \\
& y=-2(x-2)^{2}-1
\end{aligned}
$$

Product Property

$$
x^{m} \cdot x^{n}=x^{m+n} \quad x^{7} \cdot x^{-3}=x^{4}
$$

Quotient Property

$$
\begin{aligned}
& \text { Quotient Property } \\
& \frac{x^{m}}{x^{n}}=x^{m-n}
\end{aligned} \quad \frac{x^{5}}{x^{3}}=\frac{x \cdot x \cdot k \cdot x \cdot x}{x \cdot x \cdot x}=x^{2}
$$

Negative expments

$$
\begin{array}{ll}
x^{-m}=\frac{1}{x^{m}} & 2 x^{-3}=\frac{2}{x^{3}} \\
\text { or } \\
\frac{1}{x^{-m}}=x^{m} & \frac{1}{x^{-4}}=x^{4}
\end{array}
$$

Power of a power

$$
\left(x^{m}\right)^{n}=x^{m n} \quad\left(x^{5}\right)^{3}=x^{15}
$$

Power of a product

$$
(x y)^{m}=x^{m} y^{m}
$$

$$
\left(x^{2} y^{3}\right)^{4}=\left(x^{2}\right)^{4}\left(y^{3}\right)^{4}=x^{8} y^{12}
$$

