J anuary 092013 3rd.gwb - 1/2 - Wed J an 092013 09:57:58

$23 \quad y=\left(-x^{2}-4 x\right)+8$

$$
\begin{aligned}
& \frac{y}{2}=-1\left(x^{2}+4 x+4\right) \\
& y^{2}=4=-8+4(-1) \\
& \begin{array}{l}
y=-(x+2)^{2}+12 \\
\text { vertex: }(-2,12) \\
\text { axis: } \\
\text { apens: down }
\end{array}
\end{aligned}
$$

$$
\text { (24) } y=\left(x^{2}-6 x\right)+1
$$

$$
y=\left(x^{2}-6 x+\frac{9}{}\right)+1-9
$$

$$
\begin{aligned}
& \frac{-6}{2}-3 \\
& (-3)^{2}=9
\end{aligned} \quad y=(x-3)^{2}-8
$$

$$
\text { Vortex: }(3,-8)
$$

$$
\text { axis: } x=3
$$

cpers: up

$$
\begin{array}{cc}
y 11 & y=4 x^{2}+24 x \\
y=4\left(x^{2}+6 x+9\right)-9(4) \\
\frac{6}{2}(3)=9 \\
3^{2}=9 & =4(x+3)^{2}-36 \\
\text { vertex }(-3,-36) \\
\text { axis: } x=-3 \\
\text { opens: up }
\end{array}
$$

50. AEROSPACE NASA's KC135A aircraft flies in parabolic arcs to simulate the weightlessness experienced by astronauts in space. The height h of the aircraft (in feet) t seconds after it begins its parabolic flight can be modeled by the equation $h(t)=-9.09(t-32.5)^{2}+34,000$. What is the maximum height of the aircraft during this maneuver and when does it occur? Vertex (32.5, 34000)

$$
\frac{\max : \frac{34,000}{32.5 \mathrm{sec}}}{\frac{1}{2}}
$$

$$
\begin{aligned}
& A(3.09,3.27) \\
& B(3.57,2.39) \\
& C(3.22,1.53)
\end{aligned}
$$

$$
\begin{aligned}
& \text { vertex }(2,-1) \\
& \text { down } y=a(x-h)^{2}+k \\
& y=-(2)(x-2)^{2}-1
\end{aligned}
$$

