J anuary 092013 1st.gwb - 1/3 - Wed J an 092013 08:12:19

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}
$$

If

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} s(x)=0 & \Rightarrow \frac{0}{0} \\
y= \pm \infty & \Rightarrow \frac{\infty}{\infty}
\end{aligned}
$$

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x+1)(x-1)}{\frac{1}{1}}=\lim _{x \rightarrow 1} \frac{(x+1)}{1}=\frac{2}{1}
$$

$$
\lim _{x \rightarrow 1} \frac{x-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{x^{1}-1}{(x+1)(x-1)}=\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{2}
$$

J january 092013 1st.gwb - 3/3 - Wed J an 092013 08:43:37

$$
\begin{aligned}
& \lim _{x \rightarrow 1} \frac{x-1}{x^{2}-2 x+1}=\lim _{x \rightarrow 1} \frac{x^{\prime}-1}{(x-1)(x-1)}=\lim _{x \rightarrow 1} \frac{1}{x-1}=\infty \\
& \lim _{x \rightarrow \infty}\left(\frac{x^{2}+1}{x^{3}+5}=\lim _{x \rightarrow \infty} \frac{\left(x^{2}+1\right)\left(\frac{1}{x^{3}}\right)}{\left(x^{3}+5\right)\left(\frac{1}{x^{3}}\right)}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}+\frac{1}{x^{3}}}{1+\frac{15}{x^{3}}}=\frac{0}{1}=0\right. \\
& \frac{\frac{x^{2}}{x^{3}}+\frac{1}{x^{3}}}{\frac{x^{3}}{x^{7}}+\frac{5}{x^{3}}} \\
& \lim _{x \rightarrow \infty} \frac{x^{3}+5}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{\frac{x^{3}}{x^{2}}+\frac{x^{2}}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{1}{x^{2}}}=\lim _{x \rightarrow \infty} \frac{x}{1}=\infty \\
& \lim _{x \rightarrow \infty} \frac{\sqrt{2 x^{2}}+3 x-5}{1 x^{2}+4 x-11}=\lim _{x \rightarrow \infty}\left(\frac{27 \frac{3}{x}-\frac{5}{x}}{1+\frac{4}{x}-\frac{11}{x^{2}}}=\frac{2}{1}=2\right. \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=\frac{0}{0} \\
& \lim _{x \rightarrow a} \frac{f(x)}{g(x)} \text {, if } \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=0 \\
& L(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& f(c)=\lim _{x \rightarrow c} f(x) \geq 0 \\
& \begin{array}{c}
\text { diff. at } x=c \\
\text { cont at } x=c
\end{array} \\
& \text { cont at } x=c \\
& g(c)=\lim _{x \rightarrow c} g(x)=0 \\
& f(x)=\sqrt{f(c)}+f^{\prime}(c)(x-c)=f^{\prime}(c)(x-c) \\
& g(x)=g(c)+g^{\prime}(c)(x-c)=g^{\prime}(c)(x-c) \\
& \lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(c)(x-c)}{g^{\prime}(c)(x-c)}=
\end{aligned}
$$

