J anuary 092013 7th.gwb - 1/3 - Wed J an 092013 13:33:25

$$
\begin{aligned}
& \text { (22) } y=\sin 6 \theta \quad k=6 \\
& \text { Period }=\frac{2 \pi}{6}=\frac{\pi}{3} \\
& A_{59}=100 \\
& \begin{aligned}
& A_{\text {circl }} \pi(5)^{2}=25 \pi \\
& \times 4 \\
& 100 \pi
\end{aligned} \\
& 100-25 \pi=
\end{aligned}
$$

(54)
$A_{\text {mpl }}=15 \quad$ Freq $=36 \mathrm{he}$ cosine

$$
\begin{array}{ll}
y=A \cos k \theta & \text { Per }=\frac{1}{36} \\
y= \pm / 5 \cos (72 \pi t) & \frac{1}{36}=\frac{2 \pi}{k} \\
y= \pm 15 \cos (72 \pi x t) & k=72 \pi
\end{array}
$$

(25)

$$
\begin{array}{ll}
\text { 5) } y=-\frac{2}{5} \sin 9 \theta & A=-\frac{2}{5} \\
A_{\text {mpl }}=\frac{2}{5} & k=9 \\
\text { Per }=\frac{2 \pi}{9} & \frac{2}{5}= \\
& \frac{1}{18}
\end{array}
$$

(34)

$$
y=-2.5 \cos \frac{\theta}{5}
$$

$$
A=-2.5
$$

$$
A_{m p} 1=2.5
$$

$$
\text { Perid }=\frac{2 \pi}{1 / 5}=2 \pi \cdot \frac{5}{1}=10 \pi
$$

$$
\begin{aligned}
& y=A \sin (k \theta-c)+h \\
& y=A \cos (k \theta-c)+h
\end{aligned}
$$

$$
\begin{array}{cc}
2 \cos 1 \theta & -5 \\
\\
\underset{h}{4}
\end{array}
$$

State the vertical shift and the equation of the midline for the function
$y=2 \cos \theta-5$. Then $y=2 \cos \theta-5$. Then graph the function.

$$
\begin{aligned}
& A=2 \\
& h=-5
\end{aligned}
$$

