$$
\begin{aligned}
& \text { 19. } \tan 22.5^{\circ}=\tan \frac{45^{\circ}}{2}=\sqrt{\frac{1-\cos 45}{1+\cos 45}} \\
& =\sqrt{\frac{1-\frac{\sqrt{2}}{2}}{1+\frac{\sqrt{3}}{\partial}}}=\sqrt{\frac{\frac{\partial-\sqrt{2}}{2}}{\frac{\partial+\sqrt{2}}{2}}} \cdot \frac{\partial-\sqrt{2}}{\partial} \cdot \frac{\partial}{\partial+\sqrt{2}} \\
& =\sqrt{\frac{\partial-\sqrt{2}}{\partial+\sqrt{2}} \cdot \frac{\partial-\sqrt{2}}{2-\sqrt{2}}}=\sqrt{\frac{4-\partial \sqrt{2}-2 \sqrt{2}+2}{4-2}} \\
& =\sqrt{\frac{6-4 \sqrt{2}}{2}}=\sqrt{3-2 \sqrt{2}} \\
& =\sqrt{\frac{(2-\sqrt{2})^{2}}{4-2}}=\frac{2-\sqrt{2}}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} \\
& =\frac{\partial \sqrt{2}-2}{2}=\sqrt{2}-1
\end{aligned}
$$

$$
\begin{aligned}
& \text { 21. } \cos \theta=\frac{4}{5}, 0^{\circ}<\theta<90^{\circ} \\
& \left.\begin{array}{r}
\sin ^{2} \theta+\left(\frac{4}{5}\right)^{2}=1 \\
\sin ^{2} \theta=\frac{9}{25} \\
\sin \theta=\frac{3}{5} \\
\sin 2 \theta=2 \sin \theta \cos \theta \\
=2\left(\frac{3}{5}\right)\left(\frac{4}{5}\right) \\
\sin \partial \theta=\frac{24}{25}
\end{array} \right\rvert\, \cos 2
\end{aligned}
$$

$$
\sin \theta=\frac{3}{5}
$$

$$
\tan \theta=\frac{3 / 5}{4 / 5}=\frac{3}{5} \cdot \frac{5}{4}=\frac{3}{4}
$$

$$
\begin{aligned}
& \left.\cos 2 \theta=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2} \right\rvert\, \tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta} \\
&=\frac{2\left(\frac{3}{4}\right)}{1-\left(\frac{3}{4}\right)^{2}} \frac{9}{16} \\
& \cos 2 \theta=\frac{7}{25} \\
&=\frac{\frac{6}{4}}{\frac{7}{16}}=\frac{6}{44} \cdot \frac{16}{7} \\
&=\frac{24}{7}
\end{aligned}
$$

22. $\sin \theta=\frac{1}{3}, 0<\theta<\frac{\pi}{2}$

$$
\begin{aligned}
& \left(\frac{1}{3}\right)^{2}+\cos ^{2} \theta=1 \\
& \cos ^{2} \theta=\frac{8}{9} \\
& \cos \theta=\frac{2 \sqrt{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& \tan \theta=\frac{1 / 3}{2 \sqrt{2} / 3}=\frac{1}{36} \cdot \frac{\pi}{2 \sqrt{2}}= \\
& \frac{1}{2 \sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{\sqrt{2}}{4}=\tan \theta
\end{aligned}
$$

$$
\text { 28. } \begin{aligned}
\csc 2 \theta & =\frac{1}{2} \sec \theta \csc \theta \\
\frac{1}{\sin 2 \theta} & =\frac{1}{2} \cdot \frac{1}{\cos \theta} \cdot \frac{1}{\sin \theta} \\
\frac{1}{2 \sin \theta \cos \theta} & =\frac{1}{2 \sin \theta \cos \theta}
\end{aligned}
$$

30. $(\sin \theta+\cos \theta)^{2}-1=\sin 2 \theta$ $(\sin \theta+\cos \theta)(\sin \theta+\cos \theta)-1$
$\sin ^{2} \theta+2 \sin \theta \cos \theta+\cos ^{2} \theta-1=$

$$
2 \sin \theta \cos \theta+1 \overline{-1}=
$$

$$
2 \sin \theta \cos \theta=2 \sin \theta \cos \theta
$$

32. $\sec 2 \theta=\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\cos ^{2} \theta-\sin ^{2} \theta}$

$$
\begin{aligned}
& \frac{1}{\cos \partial \theta}=\frac{1}{\cos ^{2} \theta-\sin ^{2} \theta} \\
& \frac{1}{\cos 2 \theta}=\frac{1}{\cos 2 \theta}
\end{aligned}
$$

