$$
\begin{aligned}
& \text { 12. } \tan 1695^{\circ}=\tan 255=\tan (210+45) \\
& =\frac{\tan 210+\tan 45}{1-\tan 210 \tan 45}=\frac{\frac{\sqrt{3}}{3}+\frac{3}{3}}{\frac{3}{3}-\frac{\sqrt{3}}{3}} \\
& =\frac{\frac{\sqrt{3}+3}{3}}{\frac{3-\sqrt{3}}{3}}=\frac{\sqrt{3}+3}{3} \cdot \frac{35}{3-\sqrt{3}} \\
& =\frac{\sqrt{3}+3}{3-\sqrt{3}} \cdot \frac{3+\sqrt{3}}{3+\sqrt{3}}=\frac{3 \sqrt{3}+3+9+3 \sqrt{3}}{9-3} \\
& =\frac{12+6 \sqrt{3}}{6}=2+\sqrt{3}
\end{aligned}
$$

15. Verify the following identity.

$$
\begin{aligned}
& \cos A \cos B-\sin A \sin B=\frac{1-\frac{\sin A \sin B}{\cos A \cos B}}{\frac{1}{\cos A \cos B}} \\
& =\left(1-\frac{\sin A \sin B}{\cos A \cos B}\right) \cdot \frac{\cos A \cos B}{1} \\
& \cos A \cos B-\sin A \sin B=\cos A \cos B-\sin A \sin B
\end{aligned}
$$

(9) $\csc x=\sin x \tan x+\cos x$,

$$
\begin{aligned}
\frac{1}{\sin x} & =\sin x \frac{\sin x}{\cos x}+\frac{\cos x}{1}\left(\frac{\cos x}{\cos x}\right) \\
\frac{1}{\sin x} & =\frac{\sin ^{2} x}{\cos x}+\frac{\cos ^{2} x}{\cos x} \\
\frac{1}{\sin x} & =\frac{\sin ^{2} x+\cos ^{2} x}{\cos x} \\
\cos x \frac{1}{\sin x} & =\frac{1}{\cos x} \cos x \\
\frac{\cos x}{\sin x} & =1 \\
\cot x & =1
\end{aligned}
$$

6. $\cos B \cot B=\csc B-\sin B$

$$
\begin{aligned}
\cos B \frac{\cos B}{\sin B} & =\frac{1}{\sin B}-\frac{\sin B}{1} \cdot \frac{\sin B}{\sin B} \\
\frac{\cos ^{2} B}{\sin B} & =\frac{1-\sin 2 B}{\sin B} \\
\frac{\cos 2 B}{\sin B} & =\frac{\cos ^{2} B}{\sin B}
\end{aligned}
$$

