
28. The lateral area of a cone with base radius r and height h is given by the formula $L=\pi \sqrt{r^{2}+(h)}$. A cone has a lateral area of 65π square meters and a base radius of 5 meters. What is the height of the cone?

$$
\begin{aligned}
& \frac{65 h}{5 \pi}=\frac{\pi(5) \sqrt{5^{2}+h^{2}}}{54 \pi} \\
& (13)^{2}=\left(\sqrt{25+h^{2}}\right)^{2} \\
& 169=25+h^{2} \\
& \pm \sqrt{144}=\sqrt{h^{2}} \\
& \pm 12=h
\end{aligned}
$$

$$
x^{2} \cdot x^{7}=x^{9}
$$

$$
\left(x^{3}\right)^{4}=x^{12}
$$

$$
\frac{x^{10}}{x^{7}}=x^{3}
$$

March 212013 2nd.gwb - 3/6 - Thu Mar 212013 09:23:48
$a \cdot \frac{c^{\frac{12}{5}} \cdot c^{\frac{3}{5}}}{r^{3}}=\frac{c^{\frac{15}{5}}}{c^{3}}=\frac{c^{3}}{c^{3}}=c^{0}=1$
b. $\left(n^{\frac{3}{4}}\right)^{\frac{80}{5}}=n^{\frac{24}{20}}=n^{\frac{6}{5}}$
c. $\frac{x^{\frac{9}{4}}}{x^{\frac{3}{2} \cdot \frac{2}{2}}}=\frac{x^{\frac{9}{4}}}{x^{\frac{6}{4}}}=x^{\frac{3}{4}}$

$$
\begin{aligned}
& \text { 15. } 2 \sqrt{50}+\sqrt{45}-\sqrt{8} \\
& 2 \sqrt{25} \sqrt{2}+\sqrt{9} \sqrt{5}-\sqrt{4} \sqrt{2} \\
& 2.5 \sqrt{2} \\
& \frac{10 \sqrt{2}+3 \sqrt{5}-2 \sqrt{2}}{8 \sqrt{2}+3 \sqrt{5}}
\end{aligned}
$$

24.

$$
\begin{array}{cr}
\sqrt[4]{y-9}+4=1 & \sqrt[4]{\sqrt{90-9}}+4=1 \\
(\sqrt[4]{y-9})^{4}=(-3)^{4} & \sqrt[4]{81}+4=1 \\
3+y=1 \\
y-9=81 & 7=1
\end{array}
$$

no solution
(2)

$$
\begin{aligned}
& \text { (27) } t=\sqrt{\frac{d}{16}} \\
& 8=\sqrt{\frac{d}{16}} \\
& 8=\frac{\sqrt{d}}{\sqrt{16}} \\
& 4(8)=\frac{\sqrt{4}(4)}{4} \\
& (3)^{2}=(\sqrt{d})^{2}
\end{aligned}
$$

$$
(8)^{2}=\left(\sqrt{\frac{d}{16}}\right)^{2}
$$

$$
(16) 64=\frac{d}{16}(16)
$$

$$
1024 \mathrm{ft}=d
$$

7. Determine (yes/no) whether the functions
below are inverse functions. Be sure to
show all of the work for both compositions,
$[f \circ g](x)$ and $[g \circ f](x)$ to prove

$$
\begin{aligned}
& f(x)=10-\frac{x}{2} \quad g(x)=20-2 x \\
& \begin{aligned}
f(20-2 x) & \left.=10-\left(\frac{20-2 x}{2}\right) \left\lvert\, \begin{array}{l}
g\left(10-\frac{x}{2}\right)=20-2\left(10-\frac{x}{2}\right) \\
\\
\end{array}\right.\right)=10-(10-x)
\end{aligned} \\
& =10 \underset{(10-x)}{ }=20-20+\frac{2 x}{2} \\
& =10-10+x \\
& =x \\
& =\frac{2 x}{2} \\
& =x \\
& \text { C. } 27^{\frac{1}{3}} \cdot 27^{\frac{5}{3}}=27^{\frac{6}{3}}=27^{2}=729 \\
& \sqrt[3]{27} \cdot \sqrt[3]{275}
\end{aligned}
$$

(14) $(4 \sqrt{12})(3 \sqrt{20})$

$$
f-1(x)=-\frac{1}{2} x+2
$$

