18. $\frac{4+\sqrt{2}}{2-\sqrt{2}} \cdot \frac{2+\sqrt{2}}{2+\sqrt{2}}=\frac{8+4 \sqrt{2}+2 \sqrt{2}+\sqrt{2}}{4+2 \sqrt{6}-2 \sqrt{2}-\sqrt{4}}$
$=\frac{10+6 \sqrt{2}}{2}=5+3 \sqrt{2}$
19. Determine (yes/no) whether the functions below are inverse functions. Be sure to show all of the work for both compositions, $[f \circ g](x)$ and $[g \circ f](x)$ to prove.

$$
\begin{aligned}
& f(x)=10-\frac{x}{2} \\
& f(20-2 x)=10-\left(\frac{20-2 x}{2}\right) \\
&=10-(10-x) \\
&=10-10+x \\
&=x
\end{aligned} \quad \begin{aligned}
g\left(10-\frac{x}{2}\right) & =20-2\left(10-\frac{x}{2}\right) \\
& =20-20+\frac{2 x}{2} \\
&
\end{aligned}
$$

15. $2 \sqrt{50}+\sqrt{45}-\sqrt{8}$
$2 \sqrt{25} \sqrt{2} \quad \sqrt{9} \sqrt{5} \quad \sqrt{4} \sqrt{2}$
$2 \cdot 5 \sqrt{2}$
$10 \sqrt{2}+3 \sqrt{5}-2 \sqrt{2}$

$$
\begin{gathered}
x^{2} \cdot x^{5}=x^{7} \quad\left(x^{3}\right)^{4}=x^{12} \\
\frac{x^{8}}{x^{3}}=x^{5}
\end{gathered}
$$

(28)

$$
\begin{aligned}
& L=\pi \sqrt{r^{2}+h^{2}} \\
& \frac{65 d}{5 \pi}=\frac{\pi(5) \sqrt{5^{2}+h^{2}}}{\pi+5)} \\
& (13)^{2}=\left(\sqrt{25+h^{2}}\right)^{2} \\
& 169=2 \frac{5}{16}+h^{2} \\
& \pm \sqrt{144}=\sqrt{h^{2}} \\
& \pm 12=h
\end{aligned}
$$

$$
\begin{aligned}
& \text { 25. } \quad-4+(3 x+6)^{\frac{1}{2}}=18 \\
&(\sqrt{3 x+6})^{2}=(22)^{2} \\
& 3 x+6=484 \\
&-4 x \sqrt{3\left(\frac{478}{2}\right)+6}=18 \quad 3 x=478 \\
&-4+\sqrt{484}= x=\frac{478}{3} \\
&-4+22=18 \\
& 18=18 \\
&
\end{aligned}
$$

$$
\text { (13) } \begin{aligned}
& 4 \sqrt{50 x^{16}} \\
& 4 \sqrt{50} \sqrt{x^{16}} \\
& 4 \sqrt{25 \sqrt{2}} x^{8} \\
& 4.5 \sqrt{2} x^{8} \\
& 20 x^{8} \sqrt{2}
\end{aligned}
$$

