7. Determine (yes/no) whether the functions below are inverse functions. Be sure to
show all of the work for both compositions,
$[f \circ g] x)$ and $[g \circ f] x$) to prove.

$$
\begin{array}{ll}
=10-(10-x) \\
=10-10+x \\
=x+\frac{20-20+\frac{2 x}{2}}{y+s} & =\frac{2 x}{2}
\end{array}
$$

8. Graph. Then state the domain and range of the function.

$$
y=\sqrt{3 x+9}-2
$$

$$
\begin{aligned}
& 3 x+9 \geq 0 \\
& 3 x \geq-9 \\
& \begin{array}{l}
x \geq-3 \\
\text { Daman }
\end{array} \\
& \begin{array}{l}
\text { Range } \\
y \geq-2
\end{array}
\end{aligned}
$$

17. $\frac{8}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}}=\frac{8 \sqrt{2}}{\sqrt{4}}=\frac{8 \sqrt{2}}{2}=4 \sqrt{2}$

$$
\begin{aligned}
& 25 .-4+(3 x+6)^{2}=18 \\
&(\sqrt{3 x+6})^{2}=(22)^{2} \\
&-4+\sqrt{3\left(\frac{478}{3}\right)+6}=18 \\
&-4+\sqrt{484}=1 \\
&-4+22=18 \\
&-48=18
\end{aligned}
$$

(27)

$$
\begin{aligned}
t=\sqrt{\frac{d}{16}} \cdot(8)^{2}=\left(\sqrt{\frac{d}{16}}\right)^{2} & \begin{aligned}
8 & =\sqrt{\frac{d}{16}} \\
8 & =\frac{\sqrt{d}}{\sqrt{16}} \\
1024) 64 & =\frac{d}{16}(16) \\
& \begin{aligned}
(4) 8 & =\frac{\sqrt{d}}{4}(4) \\
(32)^{2} & =(\sqrt{d})^{2} \\
& \\
& =d
\end{aligned} \\
&
\end{aligned}
\end{aligned}
$$

28

$$
\begin{aligned}
L & =\pi r \sqrt{r^{2}+h^{2}} \\
\frac{6.5 \pi}{511} & =\frac{\pi(5) \sqrt{5^{2}+h^{2}}}{5 \pi} \\
(13)^{2} & =\left(\sqrt{25+h^{2}}\right)^{2} \\
169 & =25+h^{2} \\
\pm \sqrt{144} & =\sqrt{h^{2}} \\
\pm 12 & =h
\end{aligned}
$$

18.

$$
\begin{aligned}
& 3 \cdot \frac{4+\sqrt{2}}{2-\sqrt{2}} \cdot \frac{2+\sqrt{2}}{2+\sqrt{2}}=\frac{8+4 \sqrt{2}+2 \sqrt{2}+\sqrt{4}}{4+2 \sqrt{2}-2 \sqrt{2}-\sqrt{4}} \\
& =\frac{10+6 \sqrt{2}}{2}=5+3 \sqrt{2} \\
& x^{2} \cdot x^{7}=x^{9} \\
& \frac{x^{8}}{x^{6}}=x^{2}
\end{aligned}
$$

March 212013 8th.gwb - 5/6 - Thu Mar 212013 14:52:47
a. $\frac{c^{\frac{12}{5}} \cdot c^{\frac{3}{5}}}{c^{3}}=\frac{c^{\frac{15}{5}}}{c^{3}}=\frac{c^{3}}{c^{3}}=c^{0}=\square$
C. $\frac{x^{\frac{9}{4}}}{x^{\frac{3}{2} \cdot \frac{2}{2}}}=\frac{x^{\frac{9}{4}}}{x^{\frac{6}{4}}}=$
(20) b. $\sqrt[4]{h^{7}} h^{\frac{7^{2}}{4}}$

$$
\begin{aligned}
& \text { 3. If } f(x)=x^{2}-4(4) \text { and } g(x)=x+7 \\
& \text { find }[f \circ g](x)=f(x+7)=(x+7)^{2}-4(x+7) \\
& =x^{2}+7 x+7 x+49-4 x-28 \\
& =x^{2}+10 x+21 \\
& \left(\frac{f}{g}\right)(x)=\frac{3 x+1}{2 x-3}, x * \frac{3}{2} \\
& 2 x-3=0 \\
& 2 x=3 \\
& x=\frac{3}{2}
\end{aligned}
$$

6 . Find the inverse of the function below. Then graph the function and its inverse.

$$
f(x)=-2 x+4
$$

$$
y=-2 x+4
$$

$$
x=-2 y+4
$$

$$
\begin{aligned}
& \frac{1 x-4}{-2}=\frac{-2 y}{-2} \\
& -\frac{1}{2} x+2=y \\
& -\frac{1}{2} x+2=f^{-4}(x)
\end{aligned}
$$

$$
\begin{gathered}
\sqrt{2 x^{8}} \\
\frac{20 x^{4} \sqrt{2}}{\sqrt[4]{a}} \sqrt{n^{9}} \\
\frac{32^{-\frac{2}{5}}}{(14)(4 \sqrt{12})(3 \sqrt{26})} \frac{1}{32^{\frac{2}{5}}}=\frac{1}{\sqrt[5]{32^{2}}}=\left(\frac{1}{4}\right. \\
12 \sqrt{240} \\
12 \sqrt{16} \sqrt{15} \\
12 \cdot 4 \sqrt{15} \\
48 \sqrt{15}
\end{gathered}
$$

