

$$
y=a(b)^{x}, a \neq 0, b>0, b \neq 1
$$

1. The function is continuous.

2. The domain is the set of all real numbers
3. The x-axis is an asymptote of the graph

$$
\begin{aligned}
& \text { a line that a graph approaches } \\
& \text { but never tunches/crosses }
\end{aligned}
$$

4. The range is the set of all positive numbers if $a>0$ and all negative numbers if $a<0$

5. The graph contains the point $(0, a)$. The y-intercept is a.

If $\mathrm{a}>0$ and $\mathrm{b}>1$, the function $y=a(b)^{x}$ r.
represents exponential growth If $\mathrm{a}>0$ and $0<\mathrm{b}<1$, the function $y=a(b)^{x}$ represents exponential decay
(1)

$$
\begin{aligned}
& y=\left(\frac{1}{5}\right)^{x} \\
& a=1 \\
& b=\frac{1}{5}
\end{aligned} \quad \text { decay }
$$

(2)

$$
\begin{aligned}
& y=2(5)^{x} \\
& a=2 \text { growth } \\
& b=5
\end{aligned}
$$

$$
y=-\left(\frac{1}{2}\right)^{x}
$$

$$
\begin{equation*}
y=7(0.8)^{x} \tag{3}
\end{equation*}
$$ decay.

neither
(4)

$$
y=4\left(\frac{3}{2}\right)^{x}
$$ growth

Property of Equality for Exponential Functions If $2^{x}=2^{8}$, then $x=8$
(1)

$$
\begin{gathered}
3^{2 n+1}=3^{4} \\
\downarrow \\
2 n+1=4 \\
2 n=3 \\
n=\frac{3}{2}
\end{gathered}
$$

(2)

$$
\begin{aligned}
2^{4 x} & =2^{3(x-1)} \\
4 x & =3 x-3 \\
x & =-3
\end{aligned}
$$

Property of Inequality for Exponential Functions
If $2^{x}>2^{8}$, then $x>8$
(1) $3^{2 n+1} \leq 3^{4}$
(3) $5^{3 x+6} \geq 5^{5 x}$

$$
\begin{gathered}
2 n+1 \leq 4 \\
2 n \leq 3 \\
n \leq \frac{3}{2}
\end{gathered}
$$

$$
3 x+6 \geq 5 x
$$

$$
6 \geq 2 x
$$

$$
\begin{aligned}
& 3 \geq x \\
& x \leq 3
\end{aligned}
$$

$$
x \leqslant 3
$$

$$
1-7,12-17
$$

