$$
y=a(b)^{x} \quad y=2^{x}
$$

1. Sketch the graph of $y=2^{x}$. Then

$$
y=1(2)^{x}
$$ state the function's domain and range.

$-3 \quad 2^{-3}=\frac{1}{2^{3}}=\frac{1}{8}$
$-22^{-2}=\frac{1}{22}=\frac{1}{4}$
$-1 \quad 2^{-1}=\frac{1}{\alpha}$
01
2
2
4

3	8
4	16

state the function's domain and Domish! all real range.

X	Range: $y>0$	
-4	$\left(\frac{1}{2}\right)^{-4}=\frac{1-4}{2-4}=\frac{2^{4}}{14}=16$	
-3	$\left(\frac{1}{2}\right)^{-3}=$	$=8$
-2	4	
-1	2	
0	1	
1	$\left(\frac{1}{2}\right)^{1}=\frac{1}{2}$	
2	$\left(\frac{1}{2}\right)^{2}=\frac{12}{2^{2}}=\frac{1}{4}$	
3	$\frac{1}{8}$	
4	$\frac{16}{10}$	

$$
=y=a(b)^{x}, a \neq 0, b>0, b \neq 1
$$

1. The function is continuous
2. The domain is the set of all real numbers
3. The x-axis is an asymptote of the graph
a lime that a graph approaches but never tonches/crosses
4. The range is the set of all positive numbers if $a>0$ and all negative numbers if $a<0$

$$
y>0
$$

5. The graph contains the point ($0, a$, . The y-intercept is a.

$$
\begin{array}{r}
y=a(b)^{x} \\
a(b)^{0}
\end{array}
$$

1. $\mathrm{a}>0$ and $\mathrm{b}>1$, the function $y=a(b)^{x}$ r
represents exponential growth f $a>0$ and $0<b<1$, the function $y=a(b)$
(1)

$$
\begin{aligned}
& y=\left(\frac{1}{5}\right)^{x} \\
& a=1 \\
& b=\frac{1}{5} \text { decay }
\end{aligned}
$$

(2) $y=2(5)^{x}$
(3) $y=7(0.8)_{\text {decay }}^{x}$
(5) $y=\begin{gathered}-6)(4)^{x} \\ \text { neither }\end{gathered}$
(4) $y=4\left(\frac{3}{2}\right)_{\text {growth }}^{x}$

