March 262013 1st.gwb - 1/4 - Tue Mar 262013 08:13:19

$[a, b]$

$$
X_{0}=a
$$

$$
x_{1}=x_{0}+\Delta x
$$

$$
x_{2}=x_{1}+\Delta x=x_{0}+\Delta x(2)
$$

$$
x_{3}=\quad=x_{0}+2 x(3)
$$

$$
\Leftarrow \frac{x_{i}=x_{0}+\Delta x i}{\text { right endpoint }} \begin{gathered}
\text { estimation }
\end{gathered}
$$

$$
\begin{aligned}
A_{r e c} & =f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+f\left(x_{3}\right) \Delta x+f\left(x_{4}\right) \Delta x \\
& =\Delta x\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right]
\end{aligned}
$$

$$
A_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

$$
\begin{aligned}
& \text { (ex,1 } y=f(x)=2 x-2 x^{2} \quad\left[\begin{array}{l}
{[0,1] \quad \begin{array}{l}
10=n \\
\text { rectungpes }
\end{array}} \\
a, b
\end{array}\right. \\
& A_{10}=\sum_{i=1}^{10} f\left(x_{i}\right) \Delta x \\
& =\sum_{i=1}^{10} f\left(\frac{1}{10} i\right) \frac{1}{10} \\
& =\sum_{i=1}^{10}\left[\frac{i}{5}-\frac{i^{2}}{50}\right] \frac{1}{10} \\
& =\frac{1}{50} \sum_{i=1}^{10} i-\frac{1}{500} \sum_{i=1}^{10} i^{2} \\
& =\frac{1}{50}\left(\frac{10(11)}{2}\right)-\frac{1}{500}\left(\frac{10(11)(21)}{6}\right)=\frac{33}{100}=.33 \\
& A_{10}=\sum_{i=1}^{10} f\left(x_{i}\right) \Delta x \\
& f(x)=2 x-2 x^{2} \\
& =\underbrace{[f(\cdot 1)+f(.2)+f(\cdot 3)+\ldots,+f(1)]}_{\sum_{i=1}^{n} f\left(x_{i}\right)} \Delta x \cdot \frac{\Delta x=\frac{1}{10}}{[0,1]} \\
& =.18+.32
\end{aligned}
$$

March 262013 1st.gwb - 3/4 - Tue Mar 262013 08:35:01
ex,2 $A_{20}=\sum_{i=1}^{20} f\left(x_{i}\right) \Delta x$

$$
\begin{aligned}
& \Delta x=\frac{1-0}{20}=\frac{1}{20} \\
& x_{i}=0+\frac{1}{20} i \\
& x_{i}=\frac{i}{20}
\end{aligned}
$$

$$
=\frac{1}{200} \sum_{i=1}^{20} i-\frac{1}{4000} \sum_{i=1}^{20} i^{2}
$$

$$
f(x)=2 x-2 x^{2}
$$

$$
\begin{aligned}
& =\frac{1}{200}\left(\frac{20(21)}{2}\right)-\frac{1}{4000}\left(\frac{20(21)(411)}{6}\right) \\
& =.3325
\end{aligned}
$$

Defn. 3.1

$$
f(x)=4-x^{2} \quad \text { right }[-1,1] \quad n=4
$$

$$
\begin{aligned}
& A_{4}=\underbrace{}_{\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \quad} \quad \begin{array}{l}
\left.\Delta x=\frac{1-(-1)}{4} \neq \frac{1}{2}\right) \\
x_{i}=-1+\frac{1}{2} i \\
x_{i}=-1+\frac{i}{2} \\
=\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \Delta x \\
=[f(-.5)+f(0)+f(.5)+f(1)] \Delta x \\
=(3.75+4+3.75+3) \frac{1}{2} \\
=
\end{array}
\end{aligned}
$$

