11. From the 1990 census, the population of Tea was 786 . In the 2000 census, the population had grown to 1742 .

$$
\begin{aligned}
& \left(\underset{a}{0,786} \underset{\substack{\downarrow \\
x}}{(10,1742} \begin{array}{c}
1 \\
x
\end{array}\right) \\
& \frac{1742}{786}=\frac{786(b)^{10}}{786} \\
& \sqrt[10]{\frac{1742}{786}}=\sqrt[10]{b^{10}} \\
& 1.083 \approx b \rightarrow y=786(1.683)^{x} \\
& \left.\begin{array}{ll}
2007 \rightarrow x=17 \\
2016 \rightarrow x=20
\end{array} \quad \begin{array}{ll}
Y= & 786(1.083)^{17} \\
3049 \\
Y & =786(1.083)^{20} \\
3873
\end{array}\right) \\
& \left.\begin{array}{l}
786(1.08)^{17}=2908 \\
786(1.08)^{20}=3664
\end{array}\right)
\end{aligned}
$$

$$
\begin{array}{l|l}
10^{4 x+1}>10^{2(x-2)} & 10 \\
4 x+1>2 x-4 & y=1\left(\frac{1}{4}\right)^{x} \\
2 x+1>-4 \\
2 x>-5 & y>-\frac{5}{2}
\end{array}
$$

For the equation $y=2^{x}$. the inverse would be \qquad

To convert from exponential form to logarithmic form and vice versa: Exponential form
$\underline{\text { Logarithmic form }} \rightarrow \log$

$$
X=\begin{aligned}
& b^{y} \\
& \underset{b}{ } \rightarrow \text { exponent } \\
&
\end{aligned}
$$

$$
\log _{b} x=y
$$

$$
\log \text { base } b \text { of } x \text { equals y }
$$

