March 272013 1st.gwb - 1/3 - Tue Mar 262013 08:51:05

$$
f(x)=4-x^{2}
$$

right $[-1,1] \quad n=4$
$A_{4}=\underbrace{\sum_{i=1}^{4} f\left(x_{i}\right)}_{i} \Delta x$

$$
\begin{aligned}
& =\left[f\left(x_{1}\right)+f\left(x_{2}\right)+f\left(x_{3}\right)+f\left(x_{4}\right)\right] \Delta x \\
& =[f(-.5)+f(0)+f(.5)+f(1)] \Delta x \\
& =(3.75+4+3.75+3) \frac{1}{2} \\
& =7.25
\end{aligned}
$$

$$
\begin{aligned}
f(x)=4-x^{2} & \xlongequal{\text { left }} \quad\left[\begin{array}{l}
-1,1] \\
a
\end{array} \quad \begin{array}{l}
n=4 \\
A_{4}
\end{array}\right. \\
=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x & \Delta x=\frac{1-(-1)}{4} \\
& =[f(-1)+f(-.5)+f(0)+f(.5)] \Delta x \\
& =[3+3.75+4+3.75) \frac{1}{2} \\
& =7.25
\end{aligned}
$$

$$
\begin{aligned}
& f(x)=4-x^{2} \quad \frac{m_{1}^{\prime} d_{p u . h x}}{[-1,1]} \quad \Delta x=\frac{1}{2} \\
& A_{4}=\sum_{i=1}^{4} f\left(x_{i}\right) \Delta x \\
&=[f(-.75)+f(-.25)+f(.25)+f / .757) \Delta x \\
&=(3.4375+3.9375+3.9375+3.4375) \frac{1}{2} \\
&=7.375
\end{aligned}
$$

$$
\begin{aligned}
& A=\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& \text { (ex.3) } f(x)=2 x-2 x^{2} \quad[0,1] \quad n \rightarrow \infty \\
& A_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& =\sum_{i=1}^{n}\left[\alpha\left(\frac{i}{n}\right)^{n}-\alpha\left(\frac{i}{n}\right)^{2}\right] \frac{1}{n} \\
& X_{i}=a+\Delta x_{i} \\
& X_{i}=0+\frac{1}{n} i=\frac{i}{n} \\
& =\sum_{i=1}^{n}\left(\frac{2 i}{n^{2}}-\frac{2 i^{2}}{n^{3}}\right)=\frac{2}{n^{2}} \sum_{i=1}^{n} i-\frac{2}{n^{3}} \sum_{i=1}^{n} i^{2} \\
& =\frac{\not \partial}{n^{\neq}}\left(\frac{מ(n(n+1)}{\not 2}\right)-\frac{\not 2}{n^{2 Z}}\left(\frac{n(n+1)(2 n+1)}{b 3}\right) \\
& =\frac{n+1}{n}-\frac{2 n^{2}+3 n+1}{3 n^{2}} \Rightarrow \frac{3 n^{2}+3 n}{3 n^{2}}-\frac{2 n^{2}+3 n+1}{3 n^{2}} \\
& =\frac{n}{n}+\frac{1}{n}-\frac{2 n^{2}}{3 n^{2}}-\frac{3 n}{3 n^{2}}-\frac{1}{3 n^{2}}=\frac{n^{2}-1}{3 n^{2}}=\frac{(n+1)(n-1)}{3 n^{2}} \\
& A_{A}=\lim _{n \rightarrow \infty}\left(1+1^{n}-\frac{2}{3}-\not \nu^{\nu}-\frac{1}{3 n^{2}}{ }^{2}\right) \\
& =1-\frac{2}{3} \\
& =\frac{1}{3} \\
& \text { ex.4 } y=f(x)=\sqrt{x+1} \quad[1,3] \quad n \rightarrow \infty \\
& A_{n}=\sum_{i=1}^{n} f\left(x_{i}\right) \Delta x \\
& \Delta x=\frac{3-1}{n}=\frac{2}{n} \\
& x_{i}=1+\frac{\partial}{n} i \\
& =\sum_{i=1}^{n}\left(\sqrt{1+\frac{2 i}{n}+1}\right) \frac{2}{n}=\frac{2}{n} \sum_{i=1}^{n} \sqrt{\frac{2 i}{n}+2}
\end{aligned}
$$

p. 367-369

1-27 odd

