5. Simplify $\cos A \tan ^{2} A+\cos A$.

$$
\begin{gathered}
\cos A \frac{\sin ^{2} A}{\cos ^{2} A}+\cos A \\
\frac{\sin ^{2} A}{\cos A}+\frac{\cos A}{1} \cdot \frac{\cos A}{\cos A} \\
\frac{\sin ^{2} A+\cos ^{2} A}{\cos A} \\
\frac{1}{\cos A} \\
\sec A
\end{gathered}
$$

28. $\sec x \csc x=\tan x+\cot x$

$$
\begin{aligned}
\frac{1}{\cos x} \cdot \frac{1}{\sin x} & =\frac{\sin x}{\cos x} \cdot \frac{\sin x}{\sin x}+\frac{\cos x}{\sin x} \cdot \frac{\cos x}{\cos x} \\
& =\frac{\sin ^{2} x+\cos ^{2} x}{\sin x \cos x} \\
\frac{1}{\sin x \cos x} & =\frac{1}{\sin x \cos x}
\end{aligned}
$$

31. $1+\sin 2 x=(\sin x+\cos x)^{2}$

$$
\begin{aligned}
& (\sin x+\cos x)(\sin x+\cos x) \\
= & \sin ^{2} x+\sin x \cos x+\sin x \cos x+\cos ^{2} x \\
= & =1+\sin 2 x+\cos ^{2} x+2 \sin x \cos x \\
= & 1+\sin 2
\end{aligned}
$$

$$
\begin{aligned}
& \text { 16. } \cos \frac{5 \pi}{8}=\cos 112.5^{\circ}=\cos \frac{225^{\circ}}{2} \\
& =-\sqrt{\frac{1+\cos 2250}{2}}=-\sqrt{\frac{\frac{\pi}{2}+\left(-\frac{\sqrt{2}}{2}\right)}{2}} \\
& =-\sqrt{\frac{\frac{2-\sqrt{2}}{2}}{2}}=-\sqrt{\frac{2-\sqrt{2}}{4}} \\
& =-\frac{\sqrt{2-\sqrt{2}}}{2}
\end{aligned}
$$

8. If $\cos ^{2} x+2 \sin x-2=0$, find the exact value of $\underline{\sin x}$

$$
\begin{gathered}
1-\sin ^{2} x+2 \sin x-2=0 \\
-1\left(-\sin ^{2} x+2 \sin x-1=0\right) \\
\sin ^{2} x-2 \sin x+1=0 \\
(\sin x-1)(\sin x-1)=0 \\
\sin x-1=0 \\
\sin x=1
\end{gathered}
$$

$$
\begin{aligned}
& 22.2 \sin ^{2} x=-\sqrt{3} \sin x \quad \text { for } 0 \leq \begin{array}{c}
\text { radians } \\
2 \sin ^{2} x+\sqrt{3} \sin x=0
\end{array} \\
& \begin{array}{ll}
\sin x(2 \sin x+\sqrt{3})=0 \\
\sin x=0 \quad & 2 \sin x+\sqrt{3}=0 \\
x=0,180^{\circ} \quad & \sin x=-\frac{\sqrt{3}}{2} \\
x=0, \pi, \frac{4 \pi}{3}, \frac{5 \pi}{3} & x=240^{\circ}, 300^{\circ}
\end{array}
\end{aligned}
$$

18. $\sin x=\frac{3}{5^{\prime}}, 0<x<\frac{\pi}{2}$

$$
\left.\begin{array}{rlrl}
\sin 2 x & =2 \sin x \cos x & \left(\frac{3}{5}\right)^{2}+\cos ^{2} x=1 \\
& =2\left(\frac{3}{5}\right)\left(\frac{4}{5}\right) & & \cos ^{2} x=\frac{16}{25}
\end{array}\right) \begin{array}{rlr}
\sin 2 x & =\frac{24}{25} & \\
\cos 2 x & =\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2} & \\
& =\frac{11}{25}-\frac{9}{25} & \tan x=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{3} \cdot \frac{7}{4} \\
\cos 2 x & =\frac{7}{25} & \tan =\frac{3}{4} \\
\tan 2 x & =\frac{2 \tan x}{1-\tan ^{2} x} & \\
& =\frac{2\left(\frac{3}{4}\right)}{\frac{10}{16} x-\left(\frac{3}{4}\right)^{2}}=\frac{\frac{6}{4}}{\frac{7}{16}}=\frac{6}{41} \cdot \frac{16}{7} \\
\tan 2 x & =\frac{24}{7}
\end{array}
$$

