For the equation $y=2^{x}$, the inverse would be $X=2^{Y}$

$y=2^{x}$		$x=2 y$
x	y	x
-4	$\frac{1}{16}$	$\frac{x}{8}$
-3	$\frac{1}{16}$	-4
-2	$\frac{1}{4}$	$\frac{1}{8} \frac{1}{4}$
-1	$\frac{1}{2}$	-3
0	1	$\frac{1}{2}$
1	2	1
2	4	2
3	8	4
4	16	8

To convert from exponential form to logarithmic form and vice versa: Exponential form K Logarithmic form $\rightarrow \log$

$$
X=\underset{b^{\text {base }}}{b^{y \rightarrow \text { exp rent }}}
$$

$$
\log _{\substack{b \\ \text { base }}} x=y \rightarrow \text { exponent }
$$

\log base b of x equals y \log of x with base b
conv. to exp. form

1. $\log _{8} 1=0$ $\log _{b} x=y$

$$
1=8^{\circ}
$$

2. $\log _{2} \frac{x=b}{16}=-4$
$\frac{1}{16}=2^{-4} \quad 2^{-4}=\frac{1}{16}$
3. $\log _{4} 16=2$

$$
16=4^{2}
$$

4. $\log _{3} \frac{1}{27}=-3$

$$
\frac{1}{27}=3^{-3}
$$

Conv. $\exp \rightarrow \log$
5. $10^{3}=1000$
$\log _{10} 1000=3$
6. $9^{\frac{1}{2}}=3$
$\log _{9} 3=\frac{1}{2}$
conv. to log
7. $4^{3}=64$
8. $125^{\frac{1}{3}}=5$
$\log _{4} 64=3$
$\log _{125} 5=\frac{1}{3}$
Evaluate
9. $\log _{2} 64=x$

$$
\begin{gathered}
2^{6}=64=2^{x} \\
2^{6}=2^{x}
\end{gathered}
$$

$$
2^{4}=16
$$

$$
25=32
$$

$$
2^{6}=64
$$

10. $\log _{3} 81=r$

$$
3^{(\hat{r}}=81=3^{(4)}
$$

11. $\log _{4} 256=z$

$$
4 z=256=44
$$

$z=4$
12. $\log _{4} x=\frac{5}{2}$

$$
\begin{aligned}
& x=4^{\frac{5}{2}} \\
& x=\sqrt{4^{5}} \\
& x=32
\end{aligned}
$$

13. $\log _{9} x=\frac{3}{2}$

$$
\begin{aligned}
& x=9^{\frac{3}{2}} \\
& x=\sqrt{9^{3}} \\
& x=27
\end{aligned}
$$

(14)

$$
\begin{gathered}
\log _{n} 216=3 \\
\sqrt[3]{216}=\sqrt[3]{n^{3}} \\
6=n
\end{gathered}
$$

Property of Equality for Logarithmic Functions If $\log _{7} x=\log _{7} 3$, then $x=3$
15. $\log _{5}(3 x+4)=\log _{5}(7 x-8)$

$$
\begin{aligned}
3 x+4 & =7 x-8 \\
4 & =4 x-8 \\
12 & =4 x \\
3 & =x
\end{aligned}
$$

16. $\log _{3} 50=\log _{3}(6 x-4)$

$$
\begin{aligned}
& 50=6 x-4 \\
& 54=6 x \\
& 9=x
\end{aligned}
$$

Property of Inequality for Logarithmic Functions If $\log _{7}(x)>\log _{7}(3)$, then $x>3$
17. $\log _{6}(2 x-9) \leq \log _{6}(4 x+3)$

$$
\begin{aligned}
& 2 x-9 \leq 4 x+3 \\
& -9 \leq 2 x+3 \\
& -12 \leq 2 x \\
& -6 \leq x \text { or } x \geq-6
\end{aligned}
$$

