For the equation $y=2^{x}$. the inverse would be \qquad

To convert from exponential form to logarithmic form and vice versa: Exponential form

Logarithmic form $\rightarrow \log$

$$
\begin{aligned}
X= & b^{y} \text { 曷 exponent } \\
& \text { base }
\end{aligned}
$$

$$
\log _{b} x=y
$$

\log base b of x equals y \log of x with base b

Conv. $\operatorname{tog} \rightarrow$ exp

1. $\log _{8} 1=0$

$$
8^{0}=1
$$

2. $\log _{2} \frac{1}{16}=-4$

3. $\log _{4} 16=2$

$$
4^{2}=16
$$

4. $\log _{3} \frac{1}{27}=-3$

$$
3^{-3}=\frac{1}{27}
$$

5. $10^{3}=1000$

$$
\log _{10} 1000=3
$$

6. $9^{\frac{1}{2}}=3$

$$
\log _{9} 3=\frac{1}{2}
$$

7. $4^{3}=64$
$\log _{4} 64=3$
8. $125^{\frac{1}{3}}=5$

$$
\log _{125} 5=\frac{1}{3}
$$

9. $\log _{2} 64=6$
10. $\log _{3} 81$

$$
\begin{gathered}
2^{x}=64=2^{6} \\
2^{x}=2^{6} \\
x=6
\end{gathered}
$$

$$
\begin{gathered}
3^{h}=81=3^{4} \\
3^{h}=3^{4}
\end{gathered}
$$

12. $\log _{4} x=\frac{5}{2}$
13. $\log _{9} x=\frac{3}{2}$

$$
\begin{aligned}
& 4^{\frac{5}{2}}=x \\
& \sqrt{4^{5}}=x \\
& 32=x
\end{aligned}
$$

$$
\begin{aligned}
& 9^{\frac{3}{2}}=x \\
& \sqrt{9^{3}}=x \\
& 27=x
\end{aligned}
$$

$$
\begin{gathered}
\text { (14) } \begin{array}{c}
\log _{n} 216=3 \\
\sqrt[3]{n^{3}}=\sqrt[3]{216} \\
n=6
\end{array}, ~=~
\end{gathered}
$$

Property of Equality for Logarithmic Functions If $\log _{7} x=\log _{7} 3$, then $x=3$
15. $\log _{5}(3 x+4)=\log _{5}(7 x-8)$
16. $\log _{3} 50=\log _{3}(6 x-4)$

$$
\begin{aligned}
3 x+4 & =7 x-8 \\
4 & =4 x-8 \\
12 & =4 x \\
3 & =x
\end{aligned}
$$

$$
\begin{aligned}
& 50=6 x-4 \\
& 54=6 x \\
& 9=x
\end{aligned}
$$

Property of Inequality for Logarithmic Functions If $\log _{7} x>\log _{7} 3$, then $x>3$

Solve equations with logarithms on each side

$$
\begin{aligned}
& \text { 17. } \log _{6}(2 x-9) \leq \log _{6}(4 x+3) \\
& 2 x-9 \leq 4 x+3 \\
& -2 x-9 \leq 3 \\
& \begin{aligned}
&-2 x \leq 12 \\
& x \geq-6 \text { or }-6 \leq x
\end{aligned}
\end{aligned}
$$

