
13. A weather forecast says that the chance of rain tomorrow is 20%. Write the probability that it will not rain tomorrow as a fraction in lowest terms.

$$
\begin{aligned}
& 80 \%=.8= \\
& \frac{80}{100}=\frac{8}{10}=\frac{4}{5}
\end{aligned}
$$

Ricardo rolls a six-sided die seven times. He rolled a 5 the first four times. What is the theoretical probability that Ricardo will get a 5 on his next roll?

$$
\begin{aligned}
A_{\text {rect }}=12(16) & =192 \\
12 A_{\text {ri }}=\frac{1}{2} b h & =\frac{1}{2}(16)(6 .) \\
& =48
\end{aligned}
$$

16

Words If event M can occur in m ways and is followed by event N that can occur in n ways, then event M followed by event N can occur in $m \cdot n$ ways.

Example If event M can occur in 2 ways and event N can occur in 3 ways, then M followed by N can occur in $2 \cdot 3$ or 6 ways.

This rule can be extended to any number of events.

KEY CONCEPT

Probability of Two Independent Events
If two events, A and B, are independent, then the probability of both events occurring is $P(A$ and $B)=P(A) \cdot P(B)$.

This formula can be applied to any number of independent events.

KEY CONCEPT

Probability of Mutually Exclusive Events
Words If two events, A and B, are mutually exclusive, then the probability that A or B occurs is the sum of their probabilities.
Symbols $P(A$ or $B)=P(A)+P(B)$
probability of drawing a 2 or an ace? Since a card cannot be both a 2 and an ace, these are called mutually exclusive events. That is, the two events cannot occur at the same time. The probability of drawing a 2 or an ace is found by adding their individual probabilities.

1. How many 6 -letter codes can be formed using the letters $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z , allowing repetition?

-

$\div 6$. 6 - 6 - 6 $G^{6}=$ 46,656
2. How many seven-digit telephone numbers can be made using the digits $0-9$, without repetition?
$10 \cdot 9$. \qquad .7.

\qquad .4

$$
004,800
$$

$$
\begin{aligned}
& 10-d i g i^{\prime}+\# \\
& 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1=10!\text { factorial }
\end{aligned}
$$

3. Brian is playing a game with his friends. When you roll doubles (both six-sided dice land on the same number) you get another turn. In order to win the game, you must roll doubles 5 times in a row. What is the probability that Brian will be able to do this and win? Remember, there are 36 possible

outcomes when you roll two dice.

$\frac{6}{36}$
|s+
2 nd

- $\frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6} \cdot \frac{1}{6}$

