$$
\begin{aligned}
& \text { 28. } 3 \log _{7} 3-\left(\frac{1}{4}\right) \log _{7} 81=\log _{7} x \\
& \begin{array}{c}
\log _{7} 3^{3}-\log _{2} 81^{\frac{1}{4}}= \\
-\left(\log _{7} 27-\log _{2} 3=\right. \\
\log , \frac{27}{3}= \\
\Rightarrow \log 9=109 x
\end{array} \\
& \begin{aligned}
\log _{7} 9 & =\log _{2} x \\
9 & =x
\end{aligned} \\
& 33_{k 9} 9^{3 x}=4^{5 x+2} \\
& 3 x \log 9=(5 x+2) \log 4 \\
& 3 x \log 9=5 \times \log 4+2 \log 4 \\
& 3 \times \log 9-5 \times \log 4=2 \log 4 \\
& \frac{x(3 \log 9-5 \log 4)=2 \log 4}{3 \log 9-5 \log 4} \\
& x=\frac{2 \log 4}{3 \log 9-5 \log 4} \\
& x \simeq
\end{aligned}
$$

$$
\begin{aligned}
37.2 e^{3 x}+4 & =34 \\
2 e^{3 x} & =3.0 \\
\ln e^{3 x} & =\ln 15 \\
3 x & =\ln 15 \\
x & =\frac{\ln 15}{3} \\
x & \approx
\end{aligned}
$$

5. (-1, 6) and (0,3 ,

$$
\begin{aligned}
& \frac{6}{3}=\frac{3(b)^{-1}}{3} \\
& 2=b^{-1} \\
& 2=\frac{1}{b}
\end{aligned} \quad \begin{array}{r}
2 b=1 \\
b=\frac{1}{2} \\
2=3\left(\frac{1}{2}\right)^{x}
\end{array}
$$

35. $\ln (x+3)=1$

36. A certain medication is eliminated from the bloodstream at a steady rate. It decays according to the equation $y=a e^{-0.137 x}$, where t is in hours. If the nurse administers 400 milligrams of the medication, how long will it take for the amount of medication in the bloodstream to be below 30 milligrams?

$$
\ln .075 \text { tr } e^{-.1375 t}
$$

$$
\ln .075=-.1375 t
$$

$$
-.1375
$$

39. There are currently 850 students at the high school. The district plans an addition that will hold 400 more students. If the school population grows at 7.8% per year, in how many years will the new addition be full?

$$
\begin{gathered}
y=a(1+r)^{t} \\
1250=850(1+.078)^{t} \\
850 \\
\ln \frac{1250}{850}=\ln 1.078 t \\
\frac{\ln \left(\frac{1250}{850}\right)}{}=t \ln 1.078 \\
\frac{\ln \left(\frac{1250}{850}\right)}{\ln 1.078}=1.078 \\
\left.\frac{5.135 y r s}{6 y \% s}\right)
\end{gathered}
$$

